Hip, pelvis, femur and knee lower extremity trauma 2012

  • 2,933 views
Uploaded on

 

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads

Views

Total Views
2,933
On Slideshare
0
From Embeds
0
Number of Embeds
1

Actions

Shares
Downloads
509
Comments
0
Likes
3

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. HIP, PELVIS, FEMUR, AND KNEE Lower Extremity Trauma AAOS/ASSH GENEERAL ORTHO REVIEW MATTHEW L. JIMENEZ www.drjimenez.com
  • 2. Mandatory Disclosure•  The 2012 14th Annual Chicago Trauma Symposium received support from 40 industry partners
  • 3. Mandatory Disclosure•  Foundation for Education and Musculoskeletal Research (FEMR) several industry and philanthropic partners
  • 4. OUTLINE•  Handouts are from OKUs –  Need to know for the test•  This lecture gives context to the written material•  Trauma care is a visual art
  • 5. WHAT IS HIGH ENERGY?KE = ½MV²
  • 6. PELVIC-ASSOCIATED INJURIES•  HEMORRHAGE 75%•  UROGENITAL 12%•  LUMBOSACRAL PLEXUS 8%
  • 7. HIGH ENERGYPELVIC FRACTURES•  MORTALITY RATE 15-25%•  OTHER ASSOCIATED MUSCULOSKELETAL INJURIES 60-80%
  • 8. PELVICRADIOGRAPHY
  • 9. ASSESSMENT (RADIOGRAPHS)•  AP PELVIS
  • 10. INLET VIEW
  • 11. OUTLET VIEW
  • 12. PELVIC ANATOMY
  • 13. PELVIS•  LINK – Axial Skeleton – Lower Extremity Appendicular Skeleton
  • 14. PELVIS•  Several Structures of Consequence Pass Through the Pelvis –  Vascular –  Neurologic –  Genitourinary –  Gastrointestinal
  • 15. PELVIS•  Several Structures of Consequence Pass Through the Pelvis –  Vascular –  Neurologic –  Genitourinary –  Gastrointestinal
  • 16. PELVIS•  Several Structures of Consequence Pass Through the Pelvis –  Vascular –  Neurologic –  Genitourinary –  Gastrointestinal
  • 17. PELVIS•  Several Structures of Consequence Pass Through the Pelvis –  Vascular –  Neurologic –  Genitourinary –  Gastrointestinal
  • 18. CAUSES OF DISABILITY•  Persistent Pain –  Malunion –  Nonunion•  Deformity –  Pelvic Obliquity –  Malrotation –  Leg Length Discrepancy
  • 19. INDICATIONS•  One Cannot Consider the Indications for Treatment of Pelvic Fractures Without an Understanding of: – Pelvic Anatomy – Pelvic Biomechanics… Stability Concept
  • 20. PELVIS•  Bones Have No Inherent Stability
  • 21. STABILITY•  Stability Comes from the Ligaments
  • 22. PELVIC DIAPHRAGM•  Like a Trampoline
  • 23. PELVIC DIAPHRAGM•  Coccygeal and Levator Ani Muscles•  Traversed by Three Major Structures –  Urethra –  Rectum –  Vagina
  • 24. DISRUPTED PELVIC DIAPHRAGM
  • 25. PELVIC DIAPHRAGMFemale: Recto-Vaginal Trauma
  • 26. PELVIC DIAPHRAGM Male: Genitourinary TraumaExternal Rotation-Abduction Tractor-Pull
  • 27. URETHRAL INJURY Prostate Pelvic Floor Bulbous Portion Urethra
  • 28. URETHRAL INJURY
  • 29. LUMBOSACRAL PLEXUS• Anterior Rami ofT12 through S4• L4 through S1 MostImportant Clinically
  • 30. LUMBOSACRAL PLEXUS S1 Shear L5 S1
  • 31. LUMBOSACRAL PLEXUS
  • 32. BLOOD VESSELS•  Massive Hemorrhage is the Major Complication of Pelvic Disruptions
  • 33. PELVIC VEINS•  Large Thin Walled Posterior Venous Plexus –  Most Drain Into the Internal Iliac Vein•  Bleeding Often Venous
  • 34. PELVIC ARTERIES•  The Internal Iliac Artery is the Vessel of Major Importance in Pelvic Trauma
  • 35. PELVIC ARTERIES•  The Superior Gluteal Artery is the Largest Branch of the Internal Iliac Artery
  • 36. PELVICSTABILITY
  • 37. FORCE VECTORS•  Anteroposterior Compression•  Lateral Compression•  External Rotation Abduction•  Vertical Shear
  • 38. UNIVERSAL CLASSIFICATION•  Type A: STABLE•  Type B: Partially Stable –  Rotationally Unstable•  Type C: Unstable –  Tri-planer Instability
  • 39. STABILITY IS A CONTINUUM Unidirectional MultidirectionalStable Instability Instability
  • 40. RATIONALE FOR SURGERY•  The goal is to Decrease the Incidence of: – Persistent Pain – Malunion – Nonunion
  • 41. SURGICALINDICATIONS
  • 42. EMERGENTSTABILIZATION•  PELVIC SLING – STANDARD SHEET•  INTERNAL ROTATION LOWER EXTREMITIES•  SANDBAGS
  • 43. SURGICAL INDICATIONS Uniplanar Instability•  Rotationally Unstable Pelvic Fracture – Pubic Symphysis Widening of Greater than 2.5 cm Rotationally Unstable, but Vertically Stable
  • 44. SURGICAL INDICATIONS Multi-planar Instability•  Unstable Posterior Pelvic Ring –  SI Joint Dislocation –  SI Joint Fracture- Dislocation –  Unstable Sacral Fractures –  Unstable Posterior Iliac Wing Fractures
  • 45. SURGICAL INDICATIONS Multi-planar Instability•  Unstable Posterior Pelvic Ring –  SI Joint Dislocation –  SI Joint Fracture- Dislocation –  Unstable Sacral Fractures –  Unstable Posterior Iliac Wing Fractures
  • 46. SURGICAL INDICATIONS Multi-planar Instability•  Unstable Posterior Pelvic Ring –  SI Joint Dislocation –  SI Joint Fracture- Dislocation –  Unstable Sacral Fractures –  Unstable Posterior Iliac Wing Fractures
  • 47. SURGICAL INDICATIONS Multi-planar Instability•  Unstable Posterior Pelvic Ring –  SI Joint Dislocation –  SI Joint Fracture- Dislocation –  Unstable Sacral Fractures –  Unstable Posterior Iliac Wing Fractures
  • 48. SURGICAL INDICATIONS Multi-planar Instability•  Unstable Posterior Pelvic Ring –  SI Joint Dislocation –  SI Joint Fracture- Dislocation –  Unstable Sacral Fractures –  Unstable Posterior Iliac Wing Fractures
  • 49. SURGICAL INDICATIONS Multi-planar Instability•  Unstable Posterior Pelvic Ring –  SI Joint Dislocation –  SI Joint Fracture- Dislocation –  Unstable Sacral Fractures –  Unstable Posterior Iliac Wing Fractures
  • 50. SURGICAL INDICATIONS Multi-planar Instability•  Unstable Posterior Pelvic Ring –  SI Joint Dislocation –  SI Joint Fracture- Dislocation –  Unstable Sacral Fractures –  Unstable Posterior Iliac Wing Fractures
  • 51. ACETABULAR FRACTURES
  • 52. Acetabular Fractures Disrupt the Contact Area Between the Acetabulum and Femoral Head
  • 53. Displacement of the Articular Surface leads to rapid Destruction of the Hip
  • 54. Articular Fracture Principles•  Anatomic Reduction of Articular Surface•  Congruent, Stable joint with restored contact area
  • 55. ANATOMY•  ANTERIOR COLUMN•  POSTERIOR COLUMN
  • 56. ANATOMY•  ANTERIOR COLUMN –  ANT BORDER ILIAC WING –  ANTERIOR WALL –  SUPERIOR PUBIC RAMUS –  ENTIRE PELVIC BRIM
  • 57. ANATOMY•  POSTERIOR COLUMN –  GREATER SCIATIC NOTCH –  LESSER SCIATIC NOTCH –  ISCHIAL TUBEROSITY –  POSTERIOR WALL
  • 58. RADIOLOGY•  AP PELVIS•  AP & LAT HIP•  OBTURATOR OBLIQUE•  ILIAC OBLIQUE
  • 59. CLASSIFICATION•  1964 JUDET – ANATOMIC CLASSIFICATION•  LETOURNEL - SLIGHT MODIFICATION
  • 60. Surgical Indications•  Displaced Fractures (>2-3 mm)•  Roof Arc Measurements <45°•  > 20-40% of posterior wall width
  • 61. Surgical Indications•  Displaced Fractures (>2-3 mm)•  Roof Arc Measurements <45°•  > 20-40% of posterior wall width
  • 62. Surgical Indications•  Displaced Fractures (>2-3 mm)•  Roof Arc Measurements <45°•  > 20-40% of posterior wall width
  • 63. Treatment Protocol•  Radiographs Allow Proper Fracture Classification•  Fracture Location and Displacement Determine Need for Surgery•  Fracture Pattern Determines Approach
  • 64. SURGICAL APPROACHES•  KOCHER-LANGENBECK – Posterior•  ILIOINGUINAL – Anterior•  EXTENDED ILIOFEMORAL
  • 65. KOCHER- LANGENBECK•  POSTERIOR WALL•  POSTERIOR COLUMN•  TRANSVERSE•  SOME T-TYPE
  • 66. ILIOINGUINAL•  ANTERIOR WALL•  ANTERIOR COLUMN•  TRANSVERSE•  SOME T-TYPE•  MOST - BOTH COLUMN
  • 67. EXTENDED ILIOFEMORAL•  TRANSVERSE AND T-TYPE –  TRANSTECTAL –  SEVERE COMMINUTION –  LATE PRESENTATION•  BOTH-COLUMN –  LATE PRESENTATION –  SEVERE COMMINUTION
  • 68. HIP FRACTURES AND DISLOCATIONS
  • 69. RELEVANT ANATOMY•  Blood supply to the femoral head is derived primarily from the medial femoral circumflex artery, which forms an extracapsular ring with the lateral femoral circumflex artery
  • 70. RELEVANT ANATOMY•  Ascending arteries follow the posterior femoral neck and perforate the femoral head at the junction of the inferior articular surface.
  • 71. HIP DISLOCATION•  Associated with vascular injury•  Can result in AVN –  Subsequent post-traumatic hip arthrosis
  • 72. POSTERIOR HIP DISLOCATION•  Account for nearly 90% of all hip dislocations
  • 73. POSTERIOR HIP DISLOCATION•  Treatment –  Emergent closed reduction –  Open reduction through a Kocher-Langenbeck approach if closed reduction is unsuccessful
  • 74. POSTERIOR HIP DISLOCATION•  Sciatic nerve is an at risk structure –  Initial injury –  Surgical reduction –  Occur in 8-19% of patients
  • 75. COMPLICATIONS OF HIP DISLOCATIONS•  Avascular necrosis of femoral head in 10% of hip dislocations –  Risk of AVN increases with associated acetabular fracture –  Early reduction of hip dislocations is associated with a lower rate of AVN•  Post-traumatic hip arthritis in 15% of hip dislocations.
  • 76. FEMORAL HEAD FRACTURES•  Pipkin Classification- Four types –  Type I- inferior to the fovea –  Type II- superior to the fovea –  Type III- associated femoral neck fracture –  Type IV- associated acetabular fracture
  • 77. FEMORAL HEAD FRACTURES•  Treatment based on: – Fragment size – Fragment location – Fragment displacement – Hip stability
  • 78. FEMORAL HEAD FRACTURES- treatment•  Type I (infra-foveal) –  Nondisplaced- nonsurgical –  Small displaced fragments- surgical excision –  Large displaced fragments- reduction and surgical fixation
  • 79. FEMORAL HEAD FRACTURES- treatment•  Type I (infra-foveal) –  Nondisplaced- nonsurgical –  Small displaced fragments- surgical excision –  Large displaced fragments- reduction and surgical fixation
  • 80. FEMORAL HEAD FRACTURES- treatment•  Type I (infra-foveal) –  Nondisplaced- nonsurgical –  Small displaced fragments- surgical excision –  Large displaced fragments- reduction and surgical fixation
  • 81. FEMORAL HEAD FRACTURES- treatment•  Type II (supra-foveal) –  Requires accurate anatomic reduction and stable internal fixation
  • 82. FEMORAL HEAD FRACTURES- treatment•  Type III (associated femoral neck frx) –  Young patient •  Anatomic reduction and stable internal fixation of both the femoral neck and femoral head –  Older patient •  Hemiarthroplasty
  • 83. Pipkin Type IV Fracture
  • 84. FEMORAL NECK FRACTURES
  • 85. FEMORAL NECK FRACTURES- Classification•  Pauwel s Classification - based on fracture verticality –  Type I- Less than 30 degress –  Type II- 30-50 degrees –  Type III- Greater than 50 degrees
  • 86. FEMORAL NECK FRACTURES- Classification•  Garden Classification –  Type I and II – nondisplaced –  Type III and IV - displaced
  • 87. FEMORAL NECK FRACTURES- Nondisplaced•  Nondisplaced femoral neck fractures –  Treatment is the same regardless of the patient age
  • 88. FEMORAL NECK FRACTURES- Nondisplaced•  Nondisplaced femoral neck fractures – Internal Fixation – Three parallel screws
  • 89. FEMORAL NECK FRACTURES- Nondisplaced•  Ideal screw configuration – Inverted triangle – Screws positioned along the endosteal surface
  • 90. Implant Position The Concept of Cortical SupportCase Study:64 year oldwoman with impacted
  • 91. Cortical SupportRx: Fixation in situ
  • 92. Cortical SupportPost-op Ten days
  • 93. Cortical SupportPost-op Ten days
  • 94. Cortical Support
  • 95. FEMORAL NECK FRACTURES- Displaced•  Young Patients (<65 years old) –  Efforts are focused on preservation of the femoral head and avoiding arthroplasty at a young age –  ORIF
  • 96. FEMORAL NECK FRACTURES- Displaced•  Young patients –  Timing is urgent –  Lower rates of AVN with early treatment –  Anatomic reduction and stable fixation –  Slight valgus acceptable –  Avoid varus reductions
  • 97. ORIF: most important variable is quality of reduction
  • 98. FEMORAL NECK FRACTURES- Displaced•  Young patients –  High shear angle fractures (Pauwel s III) •  Supplement fixation with a fixed angle device •  Additional Oblique screw
  • 99. PROBLEM CHILD!!
  • 100. FEMORAL NECK FRACTURES- Displaced•  Older patients –  In North America, prosthetic replacement is favored
  • 101. FEMORAL NECK FRACTURES- Displaced•  Why endoprosthesis in older patients? –  Need for rapid mobilization –  ORIF failure rate of 40% •  Osteoporotic bone •  Comminution
  • 102. FEMORAL NECK FRACTURES- Displaced•  Older patients- type of prosthetic replacement? –  Unipolar hemiarthroplasty –  Bipolar hemiarthroplasty –  Cemented vs. uncemented Unipolar Bipolar
  • 103. FEMORAL NECK FRACTURES- Displaced•  Older patients- type of prosthetic replacement? –  NO difference in morbidity, mortality, or functional outcome
  • 104. FEMORAL NECK FRACTURES- Displaced•  Older patients- Total Hip Arthroplasty –  Classic indication •  Displaced fracture with ipsilateral hip arthritis –  Recently indication expanded •  Displaced fracture and an active elderly patient with no hip arthritis
  • 105. INTERTROCHANTERIC HIP FRACTURES- Classification
  • 106. INTERTROCHANTERIC HIP FRACTURES- Treatment•  Intertrochanteric hip fractures are treated the same, regardless of age
  • 107. INTERTROCHANTERIC HIP FRACTURES- Treatment•  Anatomic reduction and stable internal fixation•  Choice of implant based on –  Fracture pattern –  Associated stability of the fracture
  • 108. INTERTROCHANTERIC HIP FRACTURES- Treatment•  Sliding hip screw –  Useful for most (avoid in reverse oblique) –  Simple and predictable
  • 109. INTERTROCHANTERIC HIP FRACTURES- Treatment•  Sliding hip screw –  Do not use with reverse oblique fracture patterns
  • 110. Reverse ObliquityIntertochanteric Fixation Mode of failure l Medializationof the distal fragment l Cutout l Non-union
  • 111. 56% FAILURE RATE Haidukewych et al JBJS 2001
  • 112. INTERTROCHANTERIC HIP FRACTURES- Treatment•  Reverse oblique fracture pattern –  95 degree plate fixation •  95 degree dynamic condylar screw •  95 degree condylar blade plate –  Cephalomedullary device
  • 113. Reverse ObliquityIntertochanteric Fracture Options for Treatment
  • 114. INTERTROCHANTERIC HIP FRACTURES- Treatment•  Outcomes – No difference between a two- hole and four- hole sliding hip screw
  • 115. INTERTROCHANTERIC HIP FRACTURES- Treatment•  Cepholomedullary device –  No clear advantage over conventional sliding hip screw for most fractures –  Exceptions •  Reverse oblique fractures •  Intertrochanteric fractures with subtrochanteric extension –  More studies necessary
  • 116. Cephalomedullary Nails
  • 117. Femoral Shaft FracturesPrinciples of IM Nailing: – Mechanics: •  Stable fixation allows mobility – Biology •  Dissection away from fracture environment
  • 118. Femoral Shaft FracturesReamed Antegrade NailingWinquist JBJB 1984 520 99.1%Brumback JBJS 1988 100 98%Brumback JBJS 1989 89 Open 100%Nowotarski JBJS 1994 39 GSW 95%Bergman J Trauma 1993 65 GSW 100% 98-99% union rate!
  • 119. Femoral Shaft Fractures•  Static locked antegrade nails•  98% ultimate healingThe Gold Standard
  • 120. Ante vs. Retro Femoral Nailing3 comparative studies •  Ricci et al., JOT, 2001 •  Tornetta and Tiburzi, JBJS-Br., 2000 •  Ostrum et al., JOT, 2000
  • 121. Ante vs. Retro Femoral NailingFinal Healing % Ricci Tornetta Ostrum A 99 100 100 R 97 100 98 No difference in healing rates
  • 122. Ante vs. Retro Femoral NailingKnee Pain Ricci Tornetta Ostrum A 9% 14% 10% R 36% 13% 11% Maybe a difference in knee pain
  • 123. Ante vs. Retro Femoral NailingHip/ Thigh Pain Ricci Tornetta Ostrum A 10% n/a 26% R 4% n/a 4% More hip pain after antegrade
  • 124. orAll 3 options appear reasonable or
  • 125. Femoral Nailing: SummaryWe all know basic nailing•  Good starting point•  Quality reduction•  Ream•  Large nail•  Lock
  • 126. DISTAL FEMUR FRACTURES
  • 127. GENERAL PRINCIPLES•  Anatomic reduction of the articular surface•  Restoration of –  Length –  Rotation –  Alignment•  Stable fixation- Soft tissue friendly•  Early mobilization
  • 128. THE ARTICULAR SEGMENT•  Anatomic reduction•  Absolute Stability – Compression•  Do not compromise
  • 129. ARTICULAR CARTILAGE•  No Blood Supply•  No Nerve Supply•  No Lymphatic Supply•  Nutrition From Synovial Fluid (Diffusion)
  • 130. Meta-diaphyseal Segment•  Bridge•  Relative stability•  Avoid dissection in the zone of injury•  Restoration of overall –  Length –  Rotation –  Alignment
  • 131. PREVIOUSPLATING OPTIONS•  Condylar Buttress•  Angled Blade Plate•  Dynamic Condylar Screw
  • 132. Condylar Buttress Plate
  • 133. Blade Plate
  • 134. Comminuted fracture with shortmetaphyseal segment
  • 135. 95 degree DCS
  • 136. Screw Cut-out
  • 137. IS THERE ANOTHER SOLUTION?•  Locking Plate fixation with multiple fixed angle screws in the metaphyseal segment – Locking Condylar Plate – Liss Plate
  • 138. Conventional Plate First Screw Failure
  • 139. Conventional Plate Sequential Screw Failure
  • 140. Conventional Plate Plate/Bone Dissociation
  • 141. Locking Plate Threaded HeadLocked Screws are Fixed Angle Constructs
  • 142. Locking PlateMust Fail Simultaneously
  • 143. Locking Plate
  • 144. Locking PlateCatastrophic Failure Less Likely
  • 145. MIPPO•  Minimally invasive percutaneous plate osteosynthesis•  Submuscular plating C. Kretek
  • 146. MIPPO: What is it?•  A Concept•  A Technique•  Involves reduction•  Involves stabilization•  Not implant driven
  • 147. Conventional Plating
  • 148. MIPPO- Limited incisions andsubmuscular plate application
  • 149. OR Logistics•  Supine on a radiolucent table•  Limb prepped free•  Knee support•  Femoral distractor or large external fixator
  • 150. Beware of soft tissue stripping in the zone of injuryLateral tensor-splitting surgical approach
  • 151. Lateral Peripatellar Approach
  • 152. REDUCTION•  Articular segment reduced under direct vision –  3.5 cortical screws –  Compression when possible•  Indirect reduction of meta-diaphyseal segment –  Avoid soft-tissue stripping
  • 153. Osteoporotic, short metaphyeal segment,intra-articular extension
  • 154. -Note sub-articular 3.5 cortical screws-Joint reduced under direct vision
  • 155. SUMMARY•  Anatomic reduction and absolutely stable fixation of articular surface•  Restore –  Length –  Rotation –  Alignment•  Stable Fixation –  Biologically friendly
  • 156. THANK YOUWWW.DRJIMENEZ.COM