Upcoming SlideShare
×

# Matlab: Speech Signal Analysis

5,772 views
5,352 views

Published on

Using matlab for Speech Signal Analysis

Published in: Technology
6 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

Views
Total views
5,772
On SlideShare
0
From Embeds
0
Number of Embeds
64
Actions
Shares
0
0
0
Likes
6
Embeds 0
No embeds

No notes for slide

### Matlab: Speech Signal Analysis

1. 1. Matlab:Speech Signal Analysis<br />
2. 2. Speech Signal Analysis<br />Speech signal processing refers to the manipulation, acquisition, storage, transfer and output of vocal output by a computing machine. <br />
3. 3. Fundamental Frequency estimation – frequency domain<br />The following a sample code for fundamental frequency estimation:<br />
4. 4. Fundamental Frequency estimation - frequency domain<br />
5. 5. Fundamental Frequency estimation - frequency domain<br />To search for the index of the peak in the cepstrum between 1 and 20ms, and then convert back to hertz, use:<br />[c,fx]=max(abs(C(ms1:ms20)));<br />fprintf(&apos;Fx=%gHz &apos;,fs/(ms1+fx-1));<br />
6. 6. Fundamental Frequency estimation - time domain<br />This code plots the autocorrelation function for a section of speech signal:<br />
7. 7. Fundamental Frequency estimation - time domain<br /><ul><li>ms2=fs/500                 % maximum speech Fx at 500Hz
8. 8. ms20=fs/50                 % minimum speech Fx at 50Hz
9. 9. r=r(ms20+1:2*ms20+1)
10. 10. [rmax,tx]=max(r(ms2:ms20))
11. 11. fprintf('rmax=%g Fx=%gHz ',rmax,fs/(ms2+tx-1));</li></li></ul><li>Fundamental Frequency estimation - time domain<br />
12. 12. Foramant Frequency Estimation<br />Formant frequency estimation is demonstrated by using LPC to find the best IIR filter from a section of speech signal and then plotting the filter&apos;s frequency response.<br />
13. 13. Foramant Frequency Estimation<br />Formant frequency estimation is demonstrated by using LPC to find the best IIR filter from a section of speech signal and then plotting the filter&apos;s frequency response.<br />
14. 14. Foramant Frequency Estimation<br />r=roots(a);              <br />r=r(imag(r)&gt;0.01);      <br />ffreq=sort(atan2(imag(r),real(r))*fs/(2*pi)); for i=1:length(ffreq)<br />    fprintf(&apos;Formant %d Frequency %.1f &apos;,i,ffreq(i));<br />end<br />
15. 15. Speech Signal Analysis<br />References:<br />http://www.phon.ucl.ac.uk/courses/spsci/matlab<br />
16. 16. Visit more self help tutorials<br />Pick a tutorial of your choice and browse through it at your own pace.<br />The tutorials section is free, self-guiding and will not involve any additional support.<br />Visit us at www.dataminingtools.net<br />