Enteros Adición Y Sustracción

1,326 views

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,326
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
11
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Enteros Adición Y Sustracción

  1. 1. Números Enteros Adición y Sustracción <ul><li>Raúl Ponce Yalico </li></ul><ul><li>Universidad Nacional de Educación </li></ul><ul><li>21enmathe.blogspot.com </li></ul>
  2. 2. Buena temperatura: + 20 ºC +20 +5000 +7 – 7 – 5000 – 20 0 Mucho frío: – 20 ºC Soy rico: tengo +5000 euros Debo dinero: “tengo” -5000 euros Los números naturales se consideran enteros positivos. Por cada entero positivo hay un entero negativo. Van precedidos por un signo menos (–) De los números naturales a los enteros Los números enteros están formados por: enteros positivos, enteros negativos y el cero Los juegos olímpicos empezaron en el año 776 antes de Cristo – 250 El submarino navega a 250 m bajo el nivel del mar – 776
  3. 3. 1º. Se traza una recta y se elige un punto para representar el 0. 2º. A la derecha del 0 se representa el +1. 3º. La distancia entre 0 y +1 será la que exista entre cada dos enteros consecutivos. 4º. A la derecha del 0 se colocan los enteros positivos . 4º. A la izquierda del 0 se colocan los enteros negativos . Es útil representar los números enteros en la recta. Se siguen los pasos: +1 +2 +3 +4 +5 +6 – 1 0 – 2 – 3 – 4 – 5 Representación de los números enteros Positivos Negativos
  4. 4. Se llama valor absoluto de un número entero al número natural que sigue al signo. Se indica escribiéndolo entre barras Es evidente que +2 y –2 están asociados al número natural 2. Por eso: Los números +2 y –2 están a la misma distancia del cero: El número natural 2 se llama valor absoluto de + 2 y –2. Se indica así: Otro ejemplo: Valor absoluto de un número entero +1 +2 +3 +4 +5 +6 – 1 0 – 2 – 3 – 4 – 5 – 2 +2
  5. 5. Ordenación: Valor absoluto de un número entero es el número natural que sigue al signo Se indica escribiéndolo entre barras. Así: Gráficamente, un número entero es mayor que otro cuando en la recta numérica está a la derecha. Cualquier número entero positivo es mayor que cualquier entero negativo . El cero es mayor que cualquier negativo y menor que cualquier positivo . Dados dos números enteros positivos es mayor el que tiene mayor valor absoluto. Dados dos números enteros negativos es mayor el que tiene menor valor absoluto. Valor absoluto y ordenación de los números enteros 0 +1 +3 +2 +4 +6 – 5 +5 – 4 – 3 – 2 – 1 Más grandes Más pequeños
  6. 6. (+2) + (+3) = +5 Para sumar dos números enteros del mismo signo: 1.º Se suman sus valores absolutos. (–2) + (–3) = –5 2.º Al resultado se añade el signo que tienen. +2 +3 – 2 – 3 (+6) + (+12) = +18 (+4) + (+21) = +25 (–4) + (–11) = –15 (–17) + (–31) = –48 Suma de enteros del mismo signo 0 +1 +3 +2 +4 +6 +5 – 2 – 1 – 4 – 3 – 1 – 2 0 +2 +1 – 6 – 5
  7. 7. (+12) + (–9) = +3 Para sumar dos números enteros de distinto signo: 1.º Se restan sus valores absolutos, el menor del mayor. (+18) + (–19) = –1 2.º Al resultado se le pone el signo del sumando de mayor valor absoluto. Teresa y Miguel hacen cuentas ... Nos han dado 12 euros Y hemos gastado 9 euros Les quedan 3 euros Carola y Pablo también hacen sus cuentas ... Nos han dado 18 euros Y hemos gastado 19 euros Deben 1 euro ¿Les queda o deben dinero? (Observa que el resultado es negativo, como el número de mayor valor absoluto). Suma de números enteros de distinto signo
  8. 8. Para sumar varios números enteros: 1.º Se suman separadamente los positivos y los negativos. 2.º Se suman el número positivo y el negativo obtenido. Otros ejemplos: (+5) + (–4) + (+11) + (–7) = (+5) + (+11) + (–4) + (–7) = (+16) +(–11) = +5 (+15) + (–8) + (–31) + (+7) = (+15) + (+7) + (–8) + (–31) = (+22) +(–39) = –17 Observa que sumamos por separado los positivos y los negativos . (+100) + (–40) + (–70) + (+50) = = ( +150 ) + ( –110 ) = +40 Veamos un ejemplo: (+100) + (+50) + (–40) + (–70) = Suma de varios números enteros
  9. 9. 4 y –4 son dos números enteros simétricos respecto de 0. Tiene el mismo valor absoluto, pero distinto signo. 4 = op.(–4) –4 = op. (+4) El opuesto del opuesto de un número es igual al mismo número 8 6 – 2 – 8 – 6 – 6 – 7 – 12 7 12 Se llaman opuestos. Opuesto del opuesto: op.(–5) = 5 op.(5) = –5 Observa que el opuesto de la suma es la suma de los opuestos. 2 – 5 5 12 Opuesto de un número entero +1 +2 +3 +4 +5 +6 – 1 0 – 2 – 3 – 4 – 5 – 6 a b a + b op. (a) op. (b) op. (a+b) op. (a) + op. (b)
  10. 10. Para restar dos números enteros se suma al primero el opuesto del segundo. 1º. Como signo de la operación resta: 9 – 5 (+9) – (+5) = 9 – 5 = 4 2º. Como indicador de número negativo: –3 (+8) +(–8) = (–8) + (+8) = 0. (Observa que un número más su opuesto vale 0). (–7) + (–8) – (–17) + (–10) = –7 – 8 + 17 – 10 = – 25 + 17 = –8 (–9) – (+5) = –9 – 5 = –14 (–9) – (–5) = –9 + 5 = –4 (+9) – (–5) = 9 + 5 = 14 Algunos ejemplos: – 7 – 12 + 32 – 19 + 49 = –7 – 12 – 19 + 32 + 49 = – 38 + 81 = 43 Resta de números enteros El signo – tiene dos significados:
  11. 11. Cuando un paréntesis tiene delante el signo menos (–) se puede operar de dos maneras: 1º. Haciendo las operaciones del paréntesis. 2º. Suprimiendo el paréntesis cambiando el signo a los números que contiene. 9 – (12 + 3) = 9 – 15 = –6 1º. Haciendo antes las operaciones del paréntesis: 9 – (12 + 3) = 9 + op. (12 + 3) = 9 + op. (12) + op. (3) = 9 – 12 – 3 = 9 – 15 = –6 2º. También se puede hacer así: 12 – (10 – 6) = 12 – 4 = 8 1º. Operando antes el paréntesis: Como ves, sale el mismo resultado. 12 – (10 – 6) = 12 + op. (10 – 6) = 12 + op. (10) + op. (–6) = 12 – 10 + 6 = 8 2º. También se puede hacer así: El uso del paréntesis 9 – (12 + 3) Vamos a calcular: 12 – (10 – 6) Calculamos ahora: Son iguales
  12. 12. ( a) 15 + (17 – 38) – (–14 + 17) = 15 – 21 – 3 = – 9 (operando dentro de los paréntesis). Otros ejemplos: Un signo – delante de un paréntesis cambia el signo de todos los números de dentro. 8 + (4 – 14) = 8 – 10 = – 2 (c) 8 – (–7 + 14 – 19) = 8 + 7 – 14 + 19 = 34 – 14 = 20 (quitando el paréntesis). 1º. Haciendo antes las operaciones del paréntesis: 8 + (4 – 14) = 8 + 4 – 14 = 12 – 14 = – 2 2º. Quitando el paréntesis: 15 – (12 – 2) = 15 – 10 = 5 1º. Operando antes el paréntesis: 2º. Quitando el paréntesis: 15 – (12 – 2) = 15 – 12 + 2 = 3 + 2 = 5 Un signo + delante de un paréntesis no cambia el signo de ningún número de él. Operar con paréntesis 8 + (4 – 14) La expresión: se puede calcular de dos maneras: 15 – (12 – 2) Análogamente: se puede calcular de dos maneras:

×