4 6multiplication formulas

599 views

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
599
On SlideShare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

4 6multiplication formulas

  1. 1. Multiplication Formulas
  2. 2. Multiplication Formulas There are some important patterns in multiplying expressions that it is worthwhile to memorize.
  3. 3. Multiplication Formulas There are some important patterns in multiplying expressions that it is worthwhile to memorize. The two binomials (A + B) and (A – B) are said to be the conjugate of each other.
  4. 4. Multiplication Formulas There are some important patterns in multiplying expressions that it is worthwhile to memorize. The two binomials (A + B) and (A – B) are said to be the conjugate of each other. For example, the conjugate of (3x + 2) is (3x – 2),
  5. 5. Multiplication Formulas There are some important patterns in multiplying expressions that it is worthwhile to memorize. The two binomials (A + B) and (A – B) are said to be the conjugate of each other. For example, the conjugate of (3x + 2) is (3x – 2), and the conjugate of (2ab – c) is (2ab + c).
  6. 6. Multiplication Formulas There are some important patterns in multiplying expressions that it is worthwhile to memorize. The two binomials (A + B) and (A – B) are said to be the conjugate of each other. For example, the conjugate of (3x + 2) is (3x – 2), and the conjugate of (2ab – c) is (2ab + c). Note: The conjugate is different from the opposite. The opposite of (3x + 2) is (–3x – 2).
  7. 7. Multiplication Formulas There are some important patterns in multiplying expressions that it is worthwhile to memorize. The two binomials (A + B) and (A – B) are said to be the conjugate of each other. For example, the conjugate of (3x + 2) is (3x – 2), and the conjugate of (2ab – c) is (2ab + c). Note: The conjugate is different from the opposite. The opposite of (3x + 2) is (–3x – 2). I. Difference of Squares Formula
  8. 8. Multiplication Formulas There are some important patterns in multiplying expressions that it is worthwhile to memorize. The two binomials (A + B) and (A – B) are said to be the conjugate of each other. For example, the conjugate of (3x + 2) is (3x – 2), and the conjugate of (2ab – c) is (2ab + c). Note: The conjugate is different from the opposite. The opposite of (3x + 2) is (–3x – 2). I. Difference of Squares Formula (A + B)(A – B) Conjugate Product
  9. 9. Multiplication Formulas There are some important patterns in multiplying expressions that it is worthwhile to memorize. The two binomials (A + B) and (A – B) are said to be the conjugate of each other. For example, the conjugate of (3x + 2) is (3x – 2), and the conjugate of (2ab – c) is (2ab + c). Note: The conjugate is different from the opposite. The opposite of (3x + 2) is (–3x – 2). I. Difference of Squares Formula (A + B)(A – B) = A2 – B2 Conjugate Product Difference of Squares
  10. 10. There are some important patterns in multiplying expressions that it is worthwhile to memorize. The two binomials (A + B) and (A – B) are said to be the conjugate of each other. I. Difference of Squares Formula (A + B)(A – B) = A2 – B2 Conjugate Product Difference of Squares To verify this : (A + B)(A – B) Multiplication Formulas For example, the conjugate of (3x + 2) is (3x – 2), and the conjugate of (2ab – c) is (2ab + c). Note: The conjugate is different from the opposite. The opposite of (3x + 2) is (–3x – 2).
  11. 11. Multiplication Formulas There are some important patterns in multiplying expressions that it is worthwhile to memorize. The two binomials (A + B) and (A – B) are said to be the conjugate of each other. For example, the conjugate of (3x + 2) is (3x – 2), and the conjugate of (2ab – c) is (2ab + c). Note: The conjugate is different from the opposite. The opposite of (3x + 2) is (–3x – 2). I. Difference of Squares Formula (A + B)(A – B) = A2 – B2 Conjugate Product Difference of Squares To verify this : (A + B)(A – B) = A2 – AB + AB – B2
  12. 12. Multiplication Formulas There are some important patterns in multiplying expressions that it is worthwhile to memorize. The two binomials (A + B) and (A – B) are said to be the conjugate of each other. For example, the conjugate of (3x + 2) is (3x – 2), and the conjugate of (2ab – c) is (2ab + c). Note: The conjugate is different from the opposite. The opposite of (3x + 2) is (–3x – 2). I. Difference of Squares Formula (A + B)(A – B) = A2 – B2 Conjugate Product Difference of Squares To verify this : (A + B)(A – B) = A2 – AB + AB – B2 = A2 – B2
  13. 13. Multiplication Formulas Here are some examples of squaring:
  14. 14. Multiplication Formulas Here are some examples of squaring: (3x)2 =
  15. 15. Multiplication Formulas Here are some examples of squaring: (3x)2 = 9x2,
  16. 16. Multiplication Formulas Here are some examples of squaring: (3x)2 = 9x2, (2xy)2 =
  17. 17. Multiplication Formulas Here are some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2,
  18. 18. Multiplication Formulas Here are some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2
  19. 19. Multiplication Formulas Here are some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4.
  20. 20. Multiplication Formulas Here are some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2)
  21. 21. Multiplication Formulas Here are some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2) (A + B)(A – B)
  22. 22. Multiplication Formulas Here are some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2) = (3x)2 – (2)2 (A + B)(A – B) = A2 – B2
  23. 23. Multiplication Formulas Here are some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 (A + B)(A – B) = A2 – B2
  24. 24. Multiplication Formulas Here are some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 (A + B)(A – B) = A2 – B2 b. (2xy – 5z2)(2xy + 5z2)
  25. 25. Multiplication Formulas Here are some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 (A + B)(A – B) = A2 – B2 b. (2xy – 5z2)(2xy + 5z2) = (2xy)2 – (5z2)2
  26. 26. Multiplication Formulas Here are some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 (A + B)(A – B) = A2 – B2 b. (2xy – 5z2)(2xy + 5z2) = (2xy)2 – (5z2)2 = 4x2y2 – 25z4
  27. 27. Multiplication Formulas Here are some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 (A + B)(A – B) = A2 – B2 b. (2xy – 5z2)(2xy + 5z2) = (2xy)2 – (5z2)2 = 4x2y2 – 25z4 II. Square Formulas
  28. 28. Multiplication Formulas Here are some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 (A + B)(A – B) = A2 – B2 b. (2xy – 5z2)(2xy + 5z2) = (2xy)2 – (5z2)2 = 4x2y2 – 25z4 II. Square Formulas (A + B)2 = A2 + 2AB + B2
  29. 29. Multiplication Formulas Here are some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 (A + B)(A – B) = A2 – B2 b. (2xy – 5z2)(2xy + 5z2) = (2xy)2 – (5z2)2 = 4x2y2 – 25z4 II. Square Formulas (A + B)2 = A2 + 2AB + B2 (A – B)2 = A2 – 2AB + B2
  30. 30. Multiplication Formulas Here are some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 (A + B)(A – B) = A2 – B2 b. (2xy – 5z2)(2xy + 5z2) = (2xy)2 – (5z2)2 = 4x2y2 – 25z4 II. Square Formulas (A + B)2 = A2 + 2AB + B2 (A – B)2 = A2 – 2AB + B2 We may check this easily by multiplying,
  31. 31. Multiplication Formulas Here are some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 (A + B)(A – B) = A2 – B2 b. (2xy – 5z2)(2xy + 5z2) = (2xy)2 – (5z2)2 = 4x2y2 – 25z4 II. Square Formulas (A + B)2 = A2 + 2AB + B2 (A – B)2 = A2 – 2AB + B2 We may check this easily by multiplying, (A + B)2 = (A + B)(A + B)
  32. 32. Multiplication Formulas Here are some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 (A + B)(A – B) = A2 – B2 b. (2xy – 5z2)(2xy + 5z2) = (2xy)2 – (5z2)2 = 4x2y2 – 25z4 II. Square Formulas (A + B)2 = A2 + 2AB + B2 (A – B)2 = A2 – 2AB + B2 We may check this easily by multiplying, (A + B)2 = (A + B)(A + B) = A2 + AB + BA + B2
  33. 33. Multiplication Formulas Here are some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 (A + B)(A – B) = A2 – B2 b. (2xy – 5z2)(2xy + 5z2) = (2xy)2 – (5z2)2 = 4x2y2 – 25z4 II. Square Formulas (A + B)2 = A2 + 2AB + B2 (A – B)2 = A2 – 2AB + B2 We may check this easily by multiplying, (A + B)2 = (A + B)(A + B) = A2 + AB + BA + B2 = A2 + 2AB + B2
  34. 34. Multiplication Formulas Here are some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 (A + B)(A – B) = A2 – B2 b. (2xy – 5z2)(2xy + 5z2) = (2xy)2 – (5z2)2 = 4x2y2 – 25z4 II. Square Formulas (A + B)2 = A2 + 2AB + B2 (A – B)2 = A2 – 2AB + B2 We may check this easily by multiplying, (A + B)2 = (A + B)(A + B) = A2 + AB + BA + B2 = A2 + 2AB + B2 We say that “(A + B)2 is A2, B2, plus twice A*B”,
  35. 35. Multiplication Formulas Here are some examples of squaring: (3x)2 = 9x2, (2xy)2 = 4x2y2, and (5z2)2 = 25z4. Example A. Expand. a. (3x + 2)(3x – 2) = (3x)2 – (2)2 = 9x2 – 4 (A + B)(A – B) = A2 – B2 b. (2xy – 5z2)(2xy + 5z2) = (2xy)2 – (5z2)2 = 4x2y2 – 25z4 II. Square Formulas (A + B)2 = A2 + 2AB + B2 (A – B)2 = A2 – 2AB + B2 We may check this easily by multiplying, (A + B)2 = (A + B)(A + B) = A2 + AB + BA + B2 = A2 + 2AB + B2 We say that “(A + B)2 is A2, B2, plus twice A*B”, and “(A – B)2 is A2, B2, minus twice A*B”.
  36. 36. Example B. a. (3x + 4)2 Multiplication Formulas
  37. 37. Example B. a. (3x + 4)2 (A + B)2 Multiplication Formulas
  38. 38. Example B. a. (3x + 4)2 Multiplication Formulas (A + B)2 = A2 + 2AB + B2
  39. 39. Multiplication Formulas Example B. a. (3x + 4)2 = (3x)2 (A + B)2 = A2 + 2AB + B2
  40. 40. Multiplication Formulas Example B. a. (3x + 4)2 = (3x)2 + 2(3x)(4) (A + B)2 = A2 + 2AB + B2
  41. 41. Multiplication Formulas Example B. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 (A + B)2 = A2 + 2AB + B2
  42. 42. Multiplication Formulas Example B. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2
  43. 43. Multiplication Formulas Example B. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2
  44. 44. Multiplication Formulas Example B. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2
  45. 45. Multiplication Formulas Example B. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 = 9a2 – 30ab + 25b2
  46. 46. Multiplication Formulas Example B. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 = 9a2 – 30ab + 25b2 III. Some Applications of the Formulas
  47. 47. Multiplication Formulas Example B. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 = 9a2 – 30ab + 25b2 III. Some Applications of the Formulas We can use the above formulas to help us multiply.
  48. 48. Multiplication Formulas Example B. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 = 9a2 – 30ab + 25b2 III. Some Applications of the Formulas We can use the above formulas to help us multiply. Example C. Calculate. Use the conjugate formula. a. 51*49
  49. 49. Multiplication Formulas Example B. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 = 9a2 – 30ab + 25b2 III. Some Applications of the Formulas We can use the above formulas to help us multiply. Example C. Calculate. Use the conjugate formula. a. 51*49 = (50 + 1)(50 – 1)
  50. 50. Multiplication Formulas Example B. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 = 9a2 – 30ab + 25b2 III. Some Applications of the Formulas We can use the above formulas to help us multiply. Example C. Calculate. Use the conjugate formula. a. 51*49 = (50 + 1)(50 – 1) = 502 – 12
  51. 51. Multiplication Formulas Example B. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 = 9a2 – 30ab + 25b2 III. Some Applications of the Formulas We can use the above formulas to help us multiply. Example C. Calculate. Use the conjugate formula. a. 51*49 = (50 + 1)(50 – 1) = 502 – 12 = 2,500 – 1 = 2,499
  52. 52. Multiplication Formulas Example B. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 = 9a2 – 30ab + 25b2 III. Some Applications of the Formulas We can use the above formulas to help us multiply. Example C. Calculate. Use the conjugate formula. a. 51*49 = (50 + 1)(50 – 1) = 502 – 12 = 2,500 – 1 = 2,499 b. 52*48
  53. 53. Multiplication Formulas Example B. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 = 9a2 – 30ab + 25b2 III. Some Applications of the Formulas We can use the above formulas to help us multiply. Example C. Calculate. Use the conjugate formula. a. 51*49 = (50 + 1)(50 – 1) = 502 – 12 = 2,500 – 1 = 2,499 b. 52*48 = (50 + 2)(50 – 2) = 502 – 22
  54. 54. Multiplication Formulas Example B. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 = 9a2 – 30ab + 25b2 III. Some Applications of the Formulas We can use the above formulas to help us multiply. Example C. Calculate. Use the conjugate formula. a. 51*49 = (50 + 1)(50 – 1) = 502 – 12 = 2,500 – 1 = 2,499 b. 52*48 = (50 + 2)(50 – 2) = 502 – 22 = 2,500 – 4 = 2,496
  55. 55. Multiplication Formulas Example B. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 = 9a2 – 30ab + 25b2 III. Some Applications of the Formulas We can use the above formulas to help us multiply. Example C. Calculate. Use the conjugate formula. a. 51*49 = (50 + 1)(50 – 1) = 502 – 12 = 2,500 – 1 = 2,499 b. 52*48 = (50 + 2)(50 – 2) = 502 – 22 = 2,500 – 4 = 2,496 c. 63*57 =
  56. 56. Multiplication Formulas Example B. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 = 9a2 – 30ab + 25b2 III. Some Applications of the Formulas We can use the above formulas to help us multiply. Example C. Calculate. Use the conjugate formula. a. 51*49 = (50 + 1)(50 – 1) = 502 – 12 = 2,500 – 1 = 2,499 b. 52*48 = (50 + 2)(50 – 2) = 502 – 22 = 2,500 – 4 = 2,496 c. 63*57 = (60 + 3)(60 – 3) = 602 – 32
  57. 57. Multiplication Formulas Example B. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 = 9a2 – 30ab + 25b2 III. Some Applications of the Formulas We can use the above formulas to help us multiply. Example C. Calculate. Use the conjugate formula. a. 51*49 = (50 + 1)(50 – 1) = 502 – 12 = 2,500 – 1 = 2,499 b. 52*48 = (50 + 2)(50 – 2) = 502 – 22 = 2,500 – 4 = 2,496 c. 63*57 = (60 + 3)(60 – 3) = 602 – 32 = 3,600 – 9 = 3,591
  58. 58. Multiplication Formulas Example B. a. (3x + 4)2 = (3x)2 + 2(3x)(4) + 42 = 9x2 + 24x + 16 (A + B)2 = A2 + 2AB + B2 b. (3a – 5b)2 = (3a)2 – 2(3a)(5b) + (5b)2 = 9a2 – 30ab + 25b2 III. Some Applications of the Formulas We can use the above formulas to help us multiply. Example C. Calculate. Use the conjugate formula. a. 51*49 = (50 + 1)(50 – 1) = 502 – 12 = 2,500 – 1 = 2,499 b. 52*48 = (50 + 2)(50 – 2) = 502 – 22 = 2,500 – 4 = 2,496 c. 63*57 = (60 + 3)(60 – 3) = 602 – 32 = 3,600 – 9 = 3,591 The conjugate formula (A + B)(A – B) = A2 – B2 may be used to multiply two numbers of the forms (A + B) and (A – B) where A2 and B2 can be calculated easily.
  59. 59. Multiplication Formulas The Squaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”.
  60. 60. Multiplication Formulas The Squaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512
  61. 61. Multiplication Formulas The Squaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2
  62. 62. Multiplication Formulas The Squaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2 = 502 + 12
  63. 63. Multiplication Formulas The Squaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1)
  64. 64. Multiplication Formulas The Squaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) = 2,500 + 1 + 100
  65. 65. Multiplication Formulas The Squaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) = 2,500 + 1 + 100 = 2,601
  66. 66. Multiplication Formulas The Squaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) = 2,500 + 1 + 100 = 2,601 b. 492
  67. 67. Multiplication Formulas The Squaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) = 2,500 + 1 + 100 = 2,601 b. 492 = (50 – 1)2
  68. 68. Multiplication Formulas The Squaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) = 2,500 + 1 + 100 = 2,601 b. 492 = (50 – 1)2 = 502 + 12
  69. 69. Multiplication Formulas The Squaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) = 2,500 + 1 + 100 = 2,601 b. 492 = (50 – 1)2 = 502 + 12 – 2(50)(1)
  70. 70. Multiplication Formulas The Squaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) = 2,500 + 1 + 100 = 2,601 b. 492 = (50 – 1)2 = 502 + 12 – 2(50)(1) = 2,500 + 1 – 100
  71. 71. Multiplication Formulas The Squaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) = 2,500 + 1 + 100 = 2,601 b. 492 = (50 – 1)2 = 502 + 12 – 2(50)(1) = 2,500 + 1 – 100 = 2,401
  72. 72. Multiplication Formulas The Squaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) = 2,500 + 1 + 100 = 2,601 b. 492 = (50 – 1)2 = 502 + 12 – 2(50)(1) = 2,500 + 1 – 100 = 2,401 b. (50½) 2 = (50 + ½ )2
  73. 73. Multiplication Formulas The Squaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) = 2,500 + 1 + 100 = 2,601 b. 492 = (50 – 1)2 = 502 + 12 – 2(50)(1) = 2,500 + 1 – 100 = 2,401 b. (50½) 2 = (50 + ½ )2 = 502 + ½ 2
  74. 74. Multiplication Formulas The Squaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) = 2,500 + 1 + 100 = 2,601 b. 492 = (50 – 1)2 = 502 + 12 – 2(50)(1) = 2,500 + 1 – 100 = 2,401 b. (50½) 2 = (50 + ½ )2 = 502 + ½ 2 + 2 (½) (50)
  75. 75. Multiplication Formulas The Squaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) = 2,500 + 1 + 100 = 2,601 b. 492 = (50 – 1)2 = 502 + 12 – 2(50)(1) = 2,500 + 1 – 100 = 2,401 b. (50½) 2 = (50 + ½ )2 = 502 + ½ 2 + 2 (½) (50) = 2,500 + 1/4 + 50
  76. 76. Multiplication Formulas The Squaring Formulas. “(A + B)2 is A2, B2, plus twice A*B”, “(A – B)2 is A2, B2, minus twice A*B”. Example D. Calculate. Use the squaring formulas. a. 512 = (50 + 1)2 = 502 + 12 + 2(50)(1) = 2,500 + 1 + 100 = 2,601 b. 492 = (50 – 1)2 = 502 + 12 – 2(50)(1) = 2,500 + 1 – 100 = 2,401 b. (50½) 2 = (50 + ½ )2 = 502 + ½ 2 + 2 (½) (50) = 2,500 + 1/4 + 50 = 2,550¼
  77. 77. Multiplication Formulas Exercise. A. Calculate. Use the conjugate formula. 1. 21*19 2. 31*29 3. 41*39 4. 71*69 5. 22*18 6. 32*28 7. 52*48 8. 73*67 B. Calculate. Use the squaring formula. 9. 212 10. 312 11. 392 12. 692 13. 982 14. 30½2 15. 100½2 16. 49½2 C. Expand. 18. (x + 5)(x – 5) 19. (x – 7)(x + 7) 20. (2x + 3)(2x – 3) 21. (3x – 5)(3x + 5) 22. (7x + 2)(7x – 2) 23. (–7 + 3x )(–7 – 3x) 24. (–4x + 3)(–4x – 3) 25. (2x – 3y)(2x + 3y) 26. (4x – 5y)(5x + 5y) 27. (1 – 7y)(1 + 7y) 28. (5 – 3x)(5 + 3x) 29. (10 + 9x)(10 – 9x) 30. (x + 5)2 31. (x – 7)2 32. (2x + 3)2 33. (3x + 5y)2 34. (7x – 2y)2 35. (2x – h)2

×