• Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
No Downloads

Views

Total Views
4,725
On Slideshare
0
From Embeds
0
Number of Embeds
13

Actions

Shares
Downloads
42
Comments
2
Likes
1

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. SEMEJANZA DE TRIÁNGULOSALUMNOS DE CUARTO GRADO
  • 2. • En esta presentación encontrarás : Descripción Criterios de del concepto Definición y semejanza de semejanza ejemplos del de triángulos y ejemplos concepto de y ejemplos semejanza Algunos Todos estos elementos ejercicios son la base de los sencillos contenidos relacionados con la unidad de semejanza
  • 3. SEMEJANZA
  • 4. Descripción: Dos figuras son semejantes cuando tienen la misma “forma”, pero no necesariamente el mismo tamañoEjemplos defigurassemejantes
  • 5. No son figuras semejantes
  • 6. Definición geométrica: Dos figuras son semejantes cuando la razón entre las medidas de sus lados homólogos (correspondientes) es constante, es decir son proporcionales y sus ángulos correspondientes son congruentes Ejemplo:¿Los siguientes rectángulos son semejantes? ¿Tienen sus lados respectivos proporcionales? 10cm 10 4 5cm = 5 2 Así es, ya que los productos 2cm “cruzados” son 4cm iguales 10 •2 = 5 • 4¿Son sus ángulos correspondientescongruentes? Al cumplirse las dos Efectivamente, al tratarse de dos condiciones anteriores, rectángulos, todos los ángulos podemos decir que los miden 90º y se cumple que los ángulos correspondientes son dos rectángulos son congruentes semejantes
  • 7. Triángulos SemejantesDos triángulos son semejantes si sus ángulos son, respectivamente, iguales y sus lados homólogos son proporcionales.
  • 8. Criterios de Semejanza de TriángulosExisten algunos principios que nos permitendeterminar si dos triángulos son semejantes sin necesidad de medir y comparar todossus lados y todos sus ángulos. Estosprincipios se conocen con el nombre decriterios de semejanza de triángulos ocasos de semejanza.
  • 9. Existen tres casos de semejanza de triángulos 1. AA ( ángulo-ángulo) 2. LLL (lado-lado-lado) 3. LAL (lado-ángulo-lado)
  • 10. I. Primer Caso AA Dos triángulos que tienen los dos ángulos congruentes son semejantes entre sí. A A´ α´ α β γ B C γ´ β C’ ´ B´Es decir: Si α = α´ , β = β´ de lo anterior se deduce que γ = γ ´Entonces, ∆ ABC semejante con ∆A´B´C´
  • 11. Ejemplo¿Son los siguientes triángulos semejantes? 65 65 25 2 5 ¡SI! Por que al tener dos de sus ángulos congruentes, cumplen con el criterio AA
  • 12. II. Segundo Caso LLL Dos triángulos que tienen los tres lados proporcionales son semejantes entre sí. A A´ b b´ a a´ C B c Es decir: C’ B´ a b c c´ a´ = b´ = c´ =K El cociente obtenido de comparar los lados homólogos entre síEntonces, ∆ ABC semejante con ∆A´B´C´ recibe el nombre de razón de semejanza.
  • 13. Ejemplo Determine si los triángulos ABC y PQR son semejantes PVerifiquemos si las medidas de los B 1,5lados son proporcionales C 3,5 1,5 3,5 5 7 3 = 7 = 10 5 A 10 Efectivamente , así es, ya que los productos “cruzados” son iguales 1,5 • 7 = 3 • 3,5 = 10,5 3,5 • 10 = 7 • 5 = 35 QPor lo tanto Triángulos ABC y PQR son 3semejantes por criterio LLL R
  • 14. III. Tercer Caso LAL Dos triángulos que tienen dos lados proporcionales y el ángulo comprendido entre ellos es igual, son semejantes entre sí. A A´ a a´ α C B c α´ C’ c´ B´Es decir: a c a´ = c´ y α = α´ Entonces ∆ ABC semejante a ∆ A´B ´C´
  • 15. Ejemplo ¿Son los triángulos ABC y DEF semejantes? Veamos si dos de sus lados son proporcionales A D 9 3 E = 4 3 9 12 C B 4 Efectivamente así es, ya que los productos 12 “cruzados” son iguales 3 • 12 = 4 • 9 Efectivamente, porque,¿Los ángulos formados por tal como se señala en elestos dos lados son dibujo, ambos son rectoscongruentes? F Por criterio LAL Triángulos ABC y DEF son SEMEJANTES
  • 16. Algunas aplicaciones de estos conceptos
  • 17. Ejercicio Conocemos las dimensiones de los lados de dos triángulos. Comprueba que son semejantes y halla la razón de semejanza. a) 8 cm, 10 cm, 12 cm b) 52 cm, 65 cm, 78 cm Representemos el ejercicio Efectivamente, al calcular los productos “cruzados”, 65 podemos ver la 12 proporcionalidad entre las 8 78 medidas de los lados respectivos 10 52 •10 = 8 • 65 = 520 52 65 • 12 = 10 •78 = 780Comprobemos que las medidas de loslados homólogos son proporcionales Para calcular la razón de semejanza se calcula una 52 = 65 = 78 = 6,5 de las razones 8 10 12 65 : 10 = 6,5 Entonces los triángulos son semejantes por criterio LLL
  • 18. Ejercicio Tenemos un triángulo cuyos lados miden 3 cm, 4 cm y 5 cm respectivamente y deseamos hacer una ampliación a escala 3:1. ¿Cuánto medirá cada lado?.¿Cuál es la razón de semejanza?. Representamos la situación x=9 5 3 12 = y 4 z =15Luego, debe ocurrir: X Y Z 3 3 = 4 = 5 = 1 =3 Entonces: X = 3 X= 3· 3 = 9 3 Y Escala de 4 =3 Y = 4 · 3 =12 ampliación La razón de semejanza es 3 Z =3 Z = 5 · 3 = 15 5
  • 19. OTRO EJERCICIO SIMILAR Los lados de un triángulo miden 30, 40 y 50 centímetros respectivamente. Los lados de un segundo triángulo miden 12, 16 y 20 centímetros. ¿Son semejantes?. En caso afirmativo, ¿cual es la razón de semejanza?. Para comprobar la proporcionalidad podemos 20 12 efectuar los productos 50 “cruzados” 30x16=480 y 40x12=48030 además 16 40x20=800 y 16x50=800 40Comprobemos que las medidas de los Para calcular la razón delados homólogos son proporcionales semejanza se calcula una de las razones 50 : 20 = 2,5 30 = 40 = 50 12 16 20
  • 20. UNA APLICACIÓN Un poste vertical de 3 metros proyecta una sombra de 2 metros; ¿qué altura tiene un árbol que a la misma hora proyecta una sombra de 4,5 metros?(Haz un dibujo del problema). Son semejantes por que cumplen p el criterio AA, tienen iguales el o ángulo recto y el s 3m ángulo de t x elevación que e forman los rayos solares con el suelo 2m sombra 4,5m Los triángulos definidos por el poste y su sombra y el árbol y su sombra son semejantes, por lo tantoFormamos la proporción 3 2 X= 3 • 4,5 = 6,75m x = 4,5 De donde 2
  • 21. Para terminar una pequeña demostración
  • 22. Demuestre: Si L1// L2 , , entonces ΔABC ~ΔDEC B A C D EDemostración Afirmaciones Razones ∠ABC ≅ ∠CDE Por ser ángulos alternos internos entre // ∠BAC ≅ ∠CDE Por ser Ángulos alternos internos entre // Por lo tanto al tener dos ángulos congruentes, se cumple al criterio AA, luego, los triángulos ABC y DEC son semejantes