Graphing quadratic standard form

1,642 views

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,642
On SlideShare
0
From Embeds
0
Number of Embeds
34
Actions
Shares
0
Downloads
18
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Graphing quadratic standard form

  1. 1. Graphing Quadratic Equations<br />Standard Form<br />
  2. 2. Vertex: The maximum or minimum <br />point on the graph of a parabola.<br />Axis of Symmetry: An imaginary line<br />on the graph over which the graph is a <br />reflection of itself.<br />Roots: The locations on the graph<br />where the curve touches or crosses<br />the x-axis<br />
  3. 3. Anatomy of a Quadratic Equation in Standard Form<br />a, b, and c are called “coefficients”<br />The vertex can be found using <br />the coefficients in the formula <br />The axis of symmetry can be <br />found using the coefficients<br />in the formula<br />Similarities?<br />
  4. 4. For Example…<br />Axis of Symmetry<br />Vertex<br />
  5. 5. y<br />5<br />5<br />x<br />O<br /> 5<br />5<br />Vertex: ______________<br /> <br />Axis of Symmetry: _________<br /> <br />Direction: __________<br /> <br />Root(s): _______ ________<br />up<br />1 3<br />16<br />6<br />0<br />0<br />6<br />16<br />
  6. 6. y<br />5<br />5<br />x<br />O<br /> 5<br />5<br />Vertex: ______________<br /> <br />Axis of Symmetry: _________<br /> <br />Direction: __________<br /> <br />Root(s): _______ ________<br />down<br />-31<br />-5<br />0<br />3<br />3<br />0<br />-5<br />
  7. 7. Find the Value of a Function at a particular value of x<br />
  8. 8. Assignment <br />Worksheet – <br />Graphing Quadratics in Standard Form<br />

×