819151574804784090245745Universidad Centroccidental<br />“Lisandro Alvarado”<br />Decanato de Agronomía<br />Programa de I...
Método Runge Kutta. Computación Aplicada
Método Runge Kutta. Computación Aplicada
Método Runge Kutta. Computación Aplicada
Método Runge Kutta. Computación Aplicada
Método Runge Kutta. Computación Aplicada
Método Runge Kutta. Computación Aplicada
Método Runge Kutta. Computación Aplicada
Método Runge Kutta. Computación Aplicada
Método Runge Kutta. Computación Aplicada
Método Runge Kutta. Computación Aplicada
Método Runge Kutta. Computación Aplicada
Método Runge Kutta. Computación Aplicada
Método Runge Kutta. Computación Aplicada
Método Runge Kutta. Computación Aplicada
Método Runge Kutta. Computación Aplicada
Upcoming SlideShare
Loading in...5
×

Método Runge Kutta. Computación Aplicada

24,051

Published on

Fundamento del método Runge kutta y ejercicios de 2do y 3er orden.

Published in: Education, Travel, News & Politics
1 Comment
4 Likes
Statistics
Notes
No Downloads
Views
Total Views
24,051
On Slideshare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
685
Comments
1
Likes
4
Embeds 0
No embeds

No notes for slide

Transcript of "Método Runge Kutta. Computación Aplicada"

  1. 1. 819151574804784090245745Universidad Centroccidental<br />“Lisandro Alvarado”<br />Decanato de Agronomía<br />Programa de Ingeniería Agroindustrial<br />Núcleo Obelisco<br />Integrantes:<br />Fernández Eleana.<br />Pacheco Karla.<br />Varela Yohanna. <br />Valdivieso Marta.<br />Barquisimeto, 28 de enero del 2011<br />Introducción.<br />Una ecuación diferencial es una ecuación en la que intervienen derivadas de una o más funciones. Dependiendo del número de variables independientes respecto de las que se deriva, las ecuaciones diferenciales se dividen en: Ecuaciones diferenciales ordinarias, aquéllas que contienen derivadas respecto a una sola variable independiente. Y Ecuaciones en derivadas parciales, aquéllas que contienen derivadas respecto a dos o más variables. Las ecuaciones diferenciales son muy utilizadas en todas las ramas de la ingeniería para el modelado de fenómenos físicos. Su uso es común tanto en ciencias aplicadas, como en ciencias fundamentales como son la física, química, biología o matemáticas.<br />La resolución de ecuaciones diferenciales es un tipo de problema matemático que consiste en buscar una función que cumpla una determinada ecuación diferencial. Se puede llevar a cabo mediante un método específico para la ecuación diferencial en cuestión o mediante una transformada.<br />Como se dijo anteriormente, las ecuaciones diferenciales juegan un papel importante en varias ramas del estudio práctico y experimental, teniendo como problema que algunas ecuaciones no se pueden resolver exactamente, con lo cual hay que acudir a métodos de aproximación para tener una idea general de la solución al problema. Entre los métodos creados para la resolución de ecuaciones diferenciales por aproximación esta el Método de Runge Kutta el cual se va a estudiar en el presente trabajo, mostrando su fundamentación, aplicaciones y ejemplos de su estructura.<br />Método de Runge Kutta.<br />El método de Runge Kutta es un método numérico de resolución de ecuaciones diferenciales que surge como una mejora del método de Euler, el cual se puede considerar como un método de Runge Kutta de primer orden, éste método logra la exactitud de una serie de Taylor pero sin requerir el cálculo de derivadas superiores. Los Runge-Kutta no es sólo un método sino una importante familia de métodos iterativos tanto implícitos como explícitos para aproximar las soluciones de ecuaciones diferenciales ordinarias (E.D.O´s), estas técnicas fueron desarrolladas alrededor de 1900 por los matematicos alemanes Carl David Tolmé Runge y Martin Wilhelm Kutta.<br />Pasos para la resolución del método de Runge Kutta.<br />Definamos un problema de valor inicial como:<br />Entonces el método RK4 para este problema está dado por la siguiente ecuación:<br /> <br />Donde<br />Así, el siguiente valor (yn+1) es determinado por el presente valor (yn) mas el producto del tamaño del intervalo (h) por una pendiente estimada. La pendiente es un promedio ponderado de pendientes:<br />k1 es la pendiente al principio del intervalo;<br />k2 es la pendiente en el punto medio del intervalo, usando k1 para determinar el valor de y en el punto  usando el método de Euler<br />k3 es otra vez la pendiente del punto medio, pero ahora usando k2 para determinar el valor de y<br />k4 es la pendiente al final del intervalo, con el valor de y determinado por k3<br />Promediando las cuatro pendientes, se le asigna mayor peso a las pendientes en el punto medio:<br />Esta forma del método de Runge-Kutta, es un método de cuarto orden lo cual significa que el error por paso es del orden de O(h5), mientras que el error total acumulado tiene el orden O(h4).<br />Existen variantes del método de Runge-Kutta clásico, también llamado Runge-Kutta explícito, tales como la versión implícita del procedimiento o las parejas de métodos Runge-Kutta (o métodos Runge-Kutta-Fehlberg).<br />Este último consiste en ir aproximando la solución de la ecuación mediante dos algoritmos Runge-Kutta de órdenes diferentes, para así mantener el error acotado y hacer una buena elección de paso.<br />Versión en Segundo orden del método Runge kutta es la siguiente:<br />La versión de segundo orden de la ecuación  es<br />Donde<br /> <br />Los valores de  ,  y  son evaluados al igualar el término de segundo orden de la ecuación dada con la expansión de la serie de Taylor. Se desarrollan tres ecuaciones para evaluar cuatro constantes desconocidas. Las tres ecuaciones son:<br />  <br />Como se tienen tres ecuaciones con cuatro incógnitas se tiene que suponer el valor de una de ellas. Suponiendo que se especificó un valor para a2, se puede resolver de manera simultánea el sistema de ecuaciones obtenido:<br />Como se puede elegir un número infinito de valores para , hay un número infinito de métodos Runge-Kutta de segundo orden.<br />Cada versión podría dar exactamente los mismos resultados si la solución de la EDO fuera cuadrática, lineal o una constante.<br />Aplicación de Método del punto medio (Runge-Kutta de Segundo orden):<br />donde<br />Versión en tercer orden del método Runge Kutta:<br />19685862330Para  el resultado son seis ecuaciones con ocho incógnitas, por lo tanto se deben suponer dos valores con antelación para poder desarrollar el sistema de ecuaciones. Una versión ampliamente usada es:<br />143002036576097155452755Donde<br />6731010795<br />Ejercicio de 2do Orden de Runge-Kutta<br />Algoritmo para Matlab<br />function w=RK_punto_medio(funcion, alfa,a,b,n)<br />%RK_Punto_Medio('funtion',alfa,a,b,n)<br />% funcion : Nombre de la función f(t,y) de la derivada<br />% a,b : Extremos del intervalo. [a,b]<br />% n : Numero de iteraciones. (para la partición)<br />% alfa : Condición inicial en el instante t0=a<br />w(1)=0.1;<br />h=(b-a)/n;<br />t(1)=0.2;<br />%h=0.3;<br />%n=7;<br />for i=1:n<br /> t(i+1)=a+i*h;<br /> ftiwi=feval(funcion,t(i),w(i));<br /> tih=t(i)+h/2;<br /> wih=w(i)+h/2*ftiwi;<br /> hf=feval(funcion,tih,wih);<br /> w(i+1)=w(i)+h*hf;<br />end<br />disp([' t_i', 'w_i'])<br />disp([t(1:n)',w(1:n)'])<br />plot(t,w,'r',t,w,'*')<br />En el programa Matlab a través de este algoritmo se procedió a solucionar el siguiente problema:<br />Resolver por medio del método Runge Kutta la siguiente ecuación:<br />Z=v^3-2*v*u^2;<br />Para resolver este problema matemáticamente las variables serán sustituidas donde: <br />w = v ; t = u<br />(Ver solución del ejercicio anexo N° 1)<br />En el programa se obtuvo el siguiente resultado:<br />» RK_Punto_Medio('fprima',0.1,0,2,7)<br /> t_i w_i<br /> 0.2000 0.1000<br /> 0.2857 0.0936<br /> 0.5714 0.0842<br /> 0.8571 0.0621<br /> 1.1429 0.0341<br /> 1.4286 0.0139<br /> 1.7143 0.0057<br />ans =<br /> Columns 1 through 7 <br /> 0.1000 0.0936 0.0842 0.0621 0.0341 0.0139 0.0057<br /> Column 8 <br /> 0.0039<br />Grafica del ejercicio de 2do orden de Runge-Kutta:<br />1223010-4445<br />Se realiza el ejercicio hasta n=7 (calculado al comienzo del ejercicio)<br />Ejercicio de 3er orden Runge-Kutta <br />Algoritmo para Matlab:<br />function w=RK_ORDEN3(funcion, alfa,a,b,n)<br />%RK_Punto_Medio('funtion',alfa,a,b,n)<br />% funcion : Nombre de la función f(t,y) de la derivada<br />% a,b : Extremos del intervalo. [a,b]<br />% n : Numero de iteraciones. (para la partición)<br />% alfa : Condición inicial en el instante t0=a<br />w(1)=1;<br />h=(b-a)/n;<br />t(1)=2;<br />%h=0.3;<br />%n=7;<br />for i=1:n<br /> t(i+1)=a+i*h;<br /> k1=h*feval(funcion,t(i),w(i));<br /> k2=h*feval(funcion,t(i)+h/2,w(i)+k1/2);<br /> k3=h*feval(funcion,t(i)+h,w(i)+2*k2-k1);<br /> w(i+1)=w(i)+1/6*(k1+4*k2-k1); <br />end<br />disp([' t_i', 'w_i'])<br />disp([t(1:n)',w(1:n)'])<br />plot(t,w,'r',t,w,'*')<br />En el programa Matlab a través de este algoritmo se procedió a solucionar el siguiente problema:<br />Resolver por medio del método Runge Kutta la siguiente ecuación<br />Z= 2*v^2*u-u^3<br />Para resolver este problema matemáticamente las variables serán sustituidas donde: <br />w = v ; t = u<br />(Ver solución del ejercicio en anexo N° 2)<br />En el programa se obtuvo el siguiente resultado:<br />t_iw_i<br /> 2.0000 1.0000<br /> 0.2857 -0.7243<br /> 0.5714 -0.6627<br /> 0.8571 -0.6283<br /> 1.1429 -0.6716<br /> 1.4286 -0.8100<br /> 1.7143 -0.9989<br />ans =<br /> Columns 1 through 7 <br /> 1.0000 -0.7243 -0.6627 -0.6283 -0.6716 -0.8100 -0.9989<br /> Column 8 <br /> -1.1488<br />Grafica del ejercicio de 3er orden de Runge-Kutta:<br />1111250136525 <br />Solución ejercicio de Runge Kutta 3er orden<br />CONCLUSIÓN<br /> Realizada la investigación se determino que El sistema de numeración es el conjunto de símbolos empleados para la representación de cantidades, así como las reglas que rigen dicha representación. <br />El sistema decimal que es uno de los denominados sistemas posicionales.<br />El Sistema binario que utiliza internamente el hardware de las computadoras actuales.<br />El sistema de numeración Octal cuya base es 8<br />El hexadecimal que utiliza 16 símbolos para la representación de cantidades.<br />Para la ejecución de estos programas se tiene que efectuar algunas conversiones numéricas que son de decimal-binario (se divide el número entre dos) y binario-decimal (se suma en el número binario las diversas posiciones que contengan 1). Estos sistemas son necesarios para la utilización del Método Runge- kutta y de la implementación en el computador. Tenemos entendido lo que implica la informática en todo ello, debido a que engloba todos los pasos necesarios para la implementación de sistemas numéricos al igual que tomamos en cuenta algunas de las ecuaciones diferenciales. <br />Es necesario aprender de este tipo de temas para la aplicabilidad de la vida cotidiana, así como también la aplicación de este método en procesos agroindustriales así como en la solución de ciertos problemas o situaciones que se presentan en la ingeniería moderna, debido a que hoy en día la tecnología avanza a pasos agigantados, encontrándonos con programas y métodos nuevos que permiten solucionar de manera eficiente, eficaz y rápidamente problemas presentados en la cotidianidad.<br />

×