Conicas
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share
Uploaded on

Primera aproximación al mundo de las conicas para los alumn@s de 1º de bachillerato. Muy didáctico para que ellos aprendan por si mismos

Primera aproximación al mundo de las conicas para los alumn@s de 1º de bachillerato. Muy didáctico para que ellos aprendan por si mismos

More in: Education
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
725
On Slideshare
701
From Embeds
24
Number of Embeds
4

Actions

Shares
Downloads
25
Comments
0
Likes
0

Embeds 24

http://127.0.0.1 10
http://marmartinezalonso.blogspot.com.es 6
http://marmartinezalonso.blogspot.com 6
http://campusvirtual.ull.es 2

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. LUGARES GEOMETRICOS. CONICAS
  • 2. ¿Qué es lugar geométrico? Se llama lugar geométrico a un conjunto de puntos del plano que cumplen una determinada propiedad. Mediatriz: d(P,A) = d(P,B) Bisectriz: d(P,r) = d(P,s)
  • 3. Ejemplos de como calcular la mediatriz de un segmento ó bisectriz de un ángulo: http://www.amolasmates.es/pdf/Temas/1Bach CT/Lugar%20Geometrico.pdf
  • 4. CÓNICAS La siguiente figura se llama superficie cónica. Se obtiene haciendo girar una recta g (generatriz), alrededor de otra e (eje) a la que corta en un punto V (vértice)
  • 5. Una sección cónica es la intersección de un plano y un cono. Cambiando el ángulo y el lugar de la intersección, podemos crear:
  • 6. LA CIRCUNFERENCIA Circunferencia de centro C y radio r es el lugar geométrico de los puntos P tales que d(P, C) = r
  • 7. Ecuación de la circunferencia Datos P(x,y) C(a,b) Definición d(P,C) =r Ejercicio Desarrolla la expresión anterior y llega a una del tipo: Relaciona A, B y C con a, b, y r
  • 8. Observa que Y por tanto:
  • 9. Conclusiones Para que una expresión de 2º grado sea una circunferencia se tiene que cumplir: 1.- Coeficientes de x2 e y2 iguales 2.- No hay término en xy 3.- La expresión r2 = (A/2)2 + (B/2)2 – C tiene que ser positiva
  • 10. Posiciones relativas de una recta y una circunferencia DATOS : Recta(s) y circunferencia de radio r y centro C PROCESO -Calcula d(C,s). La llamamos d - Si d > r → s es exterior a la circunferencia - Si d = r → s es tangente a la circunferencia (Un punto de corte) - Si d < r → s y la circunferencia son secantes (2 puntos de corte)
  • 11. Ejercicios de circunferencias 1.- Escribir la ecuación de la circunferencia de centro (3, 4) y radio 2. 2.- Dada la circunferencia de ecuación x2 + y2 - 2x + 4y - 4 = 0, hallar el centro y el radio 3.- Hallar la ecuación de la circunferencia que tiene el centro en el punto C(3,1) y es tangente a la recta: 3x - 4y + 5 = 0. 4.- Hallar la ecuación de la circunferencia que pasa por los puntos A(2,0), B(2,3), C(1, 3). Muy interesante la página de donde he sacado estos ejercicios, hay más y todos con solución: http://www.vitutor.com/geo/coni/f_e.html
  • 12. La elipse es el lugar geométrico de todos los puntos de un plano, tales que la suma de las distancias a otros dos puntos fijos llamados focos es constante. ELIPSE
  • 13. Elementos de una elipse • Focos : son los puntos fijos F y F‘ • Centro de la elipse: es el punto de intersección de los ejes • Radios vectores: son los segmentos que van desde un punto de la elipse a los focos: PF y PF'. • Distancia focal: es el segmento de longitud 2c; c es el valor de la semidistancia focal. • Vértices: son los puntos de intersección de la elipse con los ejes: A, A', B y B'.
  • 14. • Relación entre la distancia focal y los semiejes Ejercicio: demuestra que k= 2·a y BF = a
  • 15. Ecuación reducida de una elipse
  • 16. APLICACIONES DE LA ELIPSE • Los planetas giran alrededor del sol describiendo órbitas elípticas siendo el sol uno de los focos (Primera ley de Kepler) • Debido a la resistencia del viento, las trayectorias que realizan los aviones cuando hacen viajes circulares se vuelven elípticas. • En arquitectura se utilizan con mayor frecuencia arcos con forma elíptica.
  • 17. Cometas y Satélites como la orbita de la luna, describen una elipse
  • 18. HIPÉRBOLA La hipérbola es una curva plana, abierta, con dos ramas; se define como el lugar geométrico de los puntos cuya diferencia de distancias a otros dos fijos, llamados focos, es constante.
  • 19. Elementos de una hipérbola • Focos : son los puntos fijos F y F‘ • Centro de la hipérbola: es el punto de intersección de los ejes • Radios vectores: son los segmentos que van desde un punto de la hipérbola a los focos: PF y PF'. • Distancia focal: es el segmento de longitud 2c; c es el valor de la semidistancia focal. • Vértices: A, A', B y B'.
  • 20. Ecuación reducida de la hipérbola • Partiendo de la definición de hipérbola: d(P,F)-d(P,F’) = 2·a y tomando P(x,y) se llega a la ecuación reducida de la hipérbola 2 2 x y − 2 =1 2 a b Se demuestra de igual forma que el caso de la elipse
  • 21. Aplicaciones de la hipérbola • Óptica • Navegación • Trayectorias de cometas • Construcciones
  • 22. Ejercicio de investigación a)¿Qué es una hipérbola equilátera? b)¿Cuál es su ecuación reducida? c)Escribe cuales serían las ecuaciones de sus asíntotas y el valor de la excentricidad
  • 23. PARÁBOLA Es el lugar geométrico de los puntos del plano, P que equidistan de un punto llamado foco F y una recta llamada directriz d.
  • 24. Elementos de la parábola • El foco es el punto F. • La directriz es la recta d. • El radio vector de un punto P es el segmento PF que lo une al foco • p es la distancia de F a d • El eje de la parábola es también un eje de simetría. • El vértice es el punto V en que el eje corta a la parábola.
  • 25. Ecuación reducida de la parábola
  • 26. APLICACIONES • Los cables de los puentes colgantes forman la envolvente de una parábola • La trayectoria de proyectiles tienen una forma parabólica • Chorro de agua de una fuente • Los espejos dentro de focos y linternas
  • 27. • En la forma de antenas, telescopio, detectores de radar se muestra una parábola.
  • 28. PAGINAS INTERESANTES PARA TRABAJAR ESTA UNIDAD http://www.amolasmates.es/pdf/Temas/1BachCT/Lugar %20Geometrico.pdf http://recursostic.educacion.es/descartes/web/materiales_didactico s/Lugares_geometricos_conicas/index.htm http://thales.cica.es/rd/Recursos/rd99/ed99-012204/conicas/tierra.html → Aparte de los conceptos teóricos también aparecen ejemplos en la vida real de las cónicas. http://www.iesadpereda.net/envios/envio4/bacman/mates/Conicas. pdf →Página con ejercicios resueltos http://www.monografias.com/trabajos82/secciones-conicasaplicaciones/secciones-conicas-aplicaciones2.shtml→ Ejemplos reales de cónicas y su historia http://divulgamat2.ehu.es/html/conicas/conicas/fotos1.htm → Imágenes con ejemplos de cónicas en la realidad