Lecture 3 Probability Theory
Upcoming SlideShare
Loading in...5
×
 

Like this? Share it with your network

Share

Lecture 3 Probability Theory

on

  • 694 views

Statistical methods and Natural Language Processing/Language Technology ...

Statistical methods and Natural Language Processing/Language Technology

Notion of Probability
Sample Spaces
Events
Axioms of Probability
Theorems of Probability
Conditional Probability
Independence and Incompatibility

Statistics

Views

Total Views
694
Views on SlideShare
371
Embed Views
323

Actions

Likes
1
Downloads
32
Comments
0

3 Embeds 323

http://www.forum.santini.se 319
http://feedly.com 3
http://www.feedspot.com 1

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Lecture 3 Probability Theory Presentation Transcript

  • 1. Machine  Learning  for  Language  Technology     Lecture  3:  Probability  Theory   Marina  San6ni   Department  of  Linguis6cs  and  Philology   Uppsala  University,  Uppsala,  Sweden     Autumn  2014     Acknowledgement:  Thanks  to  Prof.  Joakim  Nivre  for  course  design  and  materials  
  • 2. Outline   •  Sta6s6cal  methods  and  Natural  Language  Processing/ Language  Technology   •  No6on  of  Probability   •  Sample  Spaces   •  Events   •  Axioms  of  Probability   •  Theorems  of  Probability   •  Condi6onal  Probability   •  Independence  and  Incompa6bility  
  • 3. Sta6s6cal  Methods…  
  • 4. Natural  Language  Processing/Language  Technology  
  • 5. The  No6on  of  Probability  
  • 6. Sample  Spaces  
  • 7. Events  
  • 8. Composite  Experiments  
  • 9. Axioms  of  Probability  
  • 10. Simple  Probability:  Examples  
  • 11. Theorems  of  Probability  
  • 12. Condi6onal  Probability  
  • 13. Example  1:  Dice  
  • 14. Example  2:  Words  
  • 15. Independence  
  • 16. Independence:  Example  1  
  • 17. Independence:  Example  2  
  • 18. Independence  and  Incompa6bility  
  • 19. The  end