Your SlideShare is downloading. ×
Doctoral Thesis Presentation
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Doctoral Thesis Presentation

2,438
views

Published on

My Doctoral Thesis, titled "Advanced Oxidation Processes applied to mineralize Paracetamol, Chloroxylenol, Ibuprofen and Diclofenac in aqueous medium".

My Doctoral Thesis, titled "Advanced Oxidation Processes applied to mineralize Paracetamol, Chloroxylenol, Ibuprofen and Diclofenac in aqueous medium".


1 Comment
1 Like
Statistics
Notes
  • Author's website is located at http://www.scienceandtrade.com
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
No Downloads
Views
Total Views
2,438
On Slideshare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
0
Comments
1
Likes
1
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Advanced Oxidation Processes applied to mineralize Paracetamol, Chloroxylenol, Ibuprofen and Diclofenac in aqueous medium Marcel Skoumal Directors de Tesi: Dr. Pere-Lluís Cabot Dra. Rosa M. Rodríguez
  • 2. Presentation Structure - Pharmaceuticals and Personal Care Products in Freshwater - Studied Pharmaceuticals and Personal Care Products Introduction - Advanced Oxidation Processes - Paracetamol by ozone-based AOPs - Chloroxylenol by EAOPs Degradation studies - Ibuprofen by EAOPs - Diclofenac by EAOPs 2
  • 3. Freshwater is an irreplaceable resource for life 3
  • 4. - herbicides - pesticides - heavy metals - synthesis by-products... - ... Pharmaceuticals and Personal Care Products 4
  • 5. Pharmaceuticals and Personal Care Products (PPCPs) 5
  • 6. How do PPCPs reach the aquatic environment? • Excretion of pharmaceuticals • Use of Personal Care Products • Improper disposal of medicines • Veterinary use • Residues from pharmaceutical factories and hospitals 6
  • 7. Pharmaceuticals and Personal Care Products have been detected here... ...and even here. 7
  • 8. PPCPs are present in the environment. So, what? Main concerns: • Growing number of detected PPCPs • Uncertain risk of chronic exposure 8
  • 9. Studied PPCPs • PARACETAMOL • CHLOROXYLENOL • IBUPROFEN • DICLOFENAC 9
  • 10. - Paracetamol - Chloroxylenol Studied PPCPs - Ibuprofen - Diclofenac H N Paracetamol O HO IUPAC name: N-(4-hydroxyphenyl)acetamide Type: analgesic drug Consumption: high, common household drug up to 246 g L-1 (STP influent) and 220 ng L-1 (STP effluent) (a) Occurrence: 30 ng L-1 (Llobregat river), 22 ng L-1 (Ebro river) (b) Threats: Unknown effect of chronic exposure to either humans and aquatic animals (a) Gómez et al. Chemosphere (2007), 66(6), 993. 10 (b) Pedrouzo et al. J Separ Sci (2007), 30(3), 297.
  • 11. - Paracetamol - Chloroxylenol Studied PPCPs - Ibuprofen - Diclofenac Cl Chloroxylenol HO IUPAC name: 4-chloro-3,5-dimethylphenol Type: antimicrobial Uses: antimicrobial preservative, disinfectant soaps over 500 g L-1 (United Kingdom stuaries) (c) Occurrence: Threats: bacterial resistance (c) Thomas et al. Environ. Toxicol. 11 Pharmacol (1999), 18(3), 401.
  • 12. - Paracetamol - Chloroxylenol Studied PPCPs - Ibuprofen - Diclofenac OH Ibuprofen O IUPAC name: 2-[4-(2-methylpropyl)phenyl]propanoic acid Drug type: NSAID Consumption: very extended, common household drug up to 370 g L-1 (STP influent), 48 g L-1 (effluent) (d) Occurrence: up to 530 ng L-1 in German rivers (e) Threats: - unknown effect of chronic exposure to humans - growth slow-down in some aquatic larvae (d) Santos et al. Environment. Int. (2007), 33(4), 596. 12 (e) Ternes Water Res. (1998), 32(11), 3245.
  • 13. - Paracetamol - Chloroxylenol O Studied PPCPs - Ibuprofen - Diclofenac HO Cl H N Diclofenac Cl IUPAC name: 2-[2-(2,6-dichlorophenylamino)phenyl]acetic acid Drug type: NSAID Consumption extent: extended, common household drug 810 ng L-1 in German STP effluents, 150 ng L-1 in Occurrence: German rivers) (e). Over 140 ng L-1 in Catalan STP effluents, 41 ng L-1 in Ter river(b). Threats: - unknown effect of chronic exposure to humans - kidney damage on fish(f) (e) Ternes Water Res. (1998), 32(11), 3245. 13 (b) Pedrouzo et al. J Separ Sci (2007), 30(3), 297. (f) Höger et al. Aquat. Toxicol. (2005), 75(1), 53.
  • 14. Advanced Oxidation Processes (AOPs) Characteristics: - Near ambient Temperature & Pressure - No inherent generation of undesirable side-products - Generation of Hydroxyl Radicals Process E° / V F2(g) + 2 e ⇌ 2 F 2,87 OH(aq) + H+ + e ⇌ H2O(aq) 2,80 O3(g) + 2 H+ + 2 e ⇌ O2 + H2O(aq) 2,07 H2O2(aq) + 2 H+ + 2 e ⇌ 2 H2O(aq) 1,77 O2 + 4 H+ + 4 e ⇌ 2 H2O(aq) 1,23 O2 + 2 H+(aq) + 2 e ⇌ H2O2(aq) 0,70 14
  • 15. Working method Analysis of global content of pollutants: TOC Identification of degradation intermediates: GC-MS Treatment cell (ozonation or electrolysis) sampling Analysis of individual 15 pollutants: HPLC
  • 16. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Mineralization of Paracetamol by ozone-based AOPs Main oxidant species: O3 & OH. O3: generated from an electrical discharge over oxygen in the ozonator the ozone source 16
  • 17. Experimental device for ozonations tubing for ozone supply 6W blacklight blue tube coolant outlet coolant inlet magnetic stirrer 17
  • 18. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Ozone flow effect 100 flow value O3 alone 0.7 g O3 h-1 80 TOC / mg L-1 1.0 g O3 h-1 60 40 O3/Fe2+,Cu2+/H2O2/UVA 0.5 g O3 h-1 20 1.0 g O3 h-1 0 0 60 120 180 240 300 t / min 18 Conditions: pH 3.0, 25.0 °C.
  • 19. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Irradiance effect O3/Fe2+/UVA – 14 cm 100 O3/Fe2+,Cu2+/UVA – 14 cm 80 O3/Fe2+/UVA – 7 cm TOC / mg L-1 O3/Fe2+,Cu2+/UVA – 7 cm 60 40 20 0 0 60 120 180 240 300 t / min 19 Conditions: 1 g O3 h-1, pH 3.0, 25.0 °C.
  • 20. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Temperature influence 100 O3, 25 °C O3, 35 °C 80 TOC / mg L-1 60 40 O3/Fe2+,Cu2+,H2O2/UVA 20 O3/Fe2+,Cu2+,H2O2/UVA 0 0 60 120 180 240 300 t / min 20 Conditions: 1 g O3 h-1, pH 3.0.
  • 21. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Study of pH influence (O3/UVA treatment) 100 O3/UVA, pH 3 O3/UVA, pH 9 80 TOC / mg L-1 60 40 20 0 0 60 120 180 240 300 t / min 21 Conditions: 1 g O3 h-1, 25.0 °C.
  • 22. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Study of pH influence (O3/Fe2+/ UVA treatment) 100 pH 2 pH 3 Fe2+ + H2O2 → Fe3+ +OH- + OH 80 pH 4 Fe3+ + H2O + h → Fe2+ + H+ + OH TOC / mg L-1 pH 6 60 40 20 0 0 60 120 180 240 300 t / min 22 Conditions: 1 g O3 h-1, 25.0 °C, 1.0 mM Fe2+.
  • 23. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Testing of several O3-based AOPs O3 100 O3/Fe2+ O3/Cu2+ 80 TOC / mg L-1 O3/UVA O3/H2O2/UVA 60 O3/Fe2+/UVA O3/Fe2+,Cu2+/UVA 40 20 0 0 60 120 180 240 300 t / min Common conditions: 1 g O3 h-1, 25.0 °C, pH 3.0. 23 Cation including treatments contain 1.0 mM Fe2+ and/or 0.25 mM Cu2+.
  • 24. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac [H2O2] monitoring during course of several O3-based AOPs 1.2 O3 1 O3/Fe2+ [H2O2] / mg L-1 O3/Cu2+ 0.8 O3/UVA O3/Fe2+/UVA 0.6 O3/Fe2+,Cu2+/UVA 0.4 0.2 0 0 10 20 30 40 50 60 70 t / min Common conditions: 1 g O3 h-1, 25.0 °C, pH 3.0. 24 Cation including treatments contain 1.0 mM Fe2+ and/or 0.25 mM Cu2+.
  • 25. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Does OH really work? O3/Fe2+ Oxamic acid / mg L-1 O3/Fe2+ + tBu 20 O3/Fe2+/UVA O3/Fe2+/UVA + tBu O3/Fe2+,Cu2+ O3/Fe2+,Cu2+ + tBu O3/Fe2+,Cu2+/UVA 15 O3/Fe2+,Cu2+/UVA + tBu 10 0 20 40 60 80 t / min Conditions: 1 g O3 h-1, 25.0 °C, pH 3.0. 25 Added cation concentrations: 1.0 mM Fe2+ and/or 0.25 mM Cu2+.
  • 26. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Influence of Fe2+ and Cu2+ presence and ratios on Paracetamol mineralization through O3/UVA treatment 0.25 mM Fe2+ 100 1 mM Fe2+ 0.25 mM Cu2+ 80 1 mM Cu2+ TOC / mg L-1 1 mM Fe2+, 0.25 mM Cu2+ 60 x 0.25 mM Fe2+,1 mM Cu2+ 0.5 mM Fe2+,0.5 mM Cu2+ 40 20 0 0 60 120 180 240 300 360 t / min 26 Conditions: 1 g O3 h-1, 25.0 °C, pH 3.0.
  • 27. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Mineralization of Paracetamol by O3-based AOPs at different initial concentrations 500 600 400 TOC / mg L-1 TOC / mg L-1 O3/UVA O3/Fe2+/UVA 300 400 200 200 100 0 0 0 120 240 360 480 0 120 240 360 480 600 720 840 t / min t / min 500 600 400 TOC / mg L-1 TOC / mg L-1 O3/Fe2+,Cu2+,H2O2/UVA O3/Fe2+,Cu2+/UVA 300 400 200 200 100 0 0 0 120 240 360 0 60 120 180 240 300 t / min t / min Conditions: 1 g O3 h-1, 25.0 °C, pH 3.0. 27 Added cation concentrations: 1.0 mM Fe2+ and/or 0.25 mM Cu2+.
  • 28. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Paracetamol abatement kinetics under different ozone-based AOPs 180 8 O3 paracetamol / mg L-1 O3/UVA 150 6 O3/Fe2+/UVA ln[C0/Ct] 120 O3/Fe2+,Cu2+/UVA 4 90 2 0 60 k’ / 10-2 s-1 1.2 0 2 t / min 4 6 1.7 30 1.7 1.6 0 0 2 4 6 8 t / min 28 Conditions: 1 g O3 h-1, 25.0 °C, pH 3.0. Added cation concentrations: 1.0 mM Fe2+ and/or 0.25 mM Cu2+.
  • 29. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Paracetamol abatement kinetics at different initial concentrations for O3/Fe2+,Cu2+/UVA treatment 800 5 157 mg L-1 paracetamol / mg L-1 315 mg L-1 4 628 mg L-1 600 ln[C0/Ct] 3 2 400 1 0 k’ / 10-2 s-1 200 1.6 0 2 t / min 4 6 1.1 0.8 0 0 2 4 6 8 10 12 t / min 29 Conditions: 1 g O3 h-1, 25.0 °C, pH 3.0. Added cation concentrations: 1.0 mM Fe2+ and/or 0.25 mM Cu2+.
  • 30. GC-MS-identified Paracetamol intermediates acetamide hydroquinone p-benzoquinone glycolic acid glyoxylic acid oxalic acid tartronic acid ketomalonic acid 2-hydroxy-4(N-acetyl)aminophenol 30 maleic acid
  • 31. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Aromatic intermediates of Paracetamol Hydroquinone 9 [hydroquinone] / mg L-1 O3 8 O3/UVA 7 O3/Fe2+/UVA 6 O3/Fe2+,Cu2+/UVA 5 4 3 2 1 0 0 1 2 3 4 5 6 t / min Conditions: 1 g O3 h-1, 25.0 °C, pH 3.0. 31 Added cation concentrations: 1.0 mM Fe2+ and/or 0.25 mM Cu2+.
  • 32. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Aromatic intermediates of Paracetamol p-benzoquinone 12 [p-benzoquinone] / mg L-1 O3 O3/UVA 10 O3/Fe2+/UVA 8 O3/Fe2+,Cu2+/UVA 6 4 2 0 0 2 4 6 8 t / min Conditions: 1 g O3 h-1, 25.0 °C, pH 3.0. 32 Added cation concentrations: 1.0 mM Fe2+ and/or 0.25 mM Cu2+.
  • 33. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Aliphatic carboxylic acid intermediates of Paracetamol Oxalic acid 250 [oxalic acid]/ mg L-1 200 O3 150 O3/UVA O3/Fe2+/UVA 100 O3/Fe2+,Cu2+/UVA 50 0 0 60 120 180 240 300 t / min Conditions: 1 g O3 h-1, 25.0 °C, pH 3.0. 33 Added cation concentrations: 1.0 mM Fe2+ and/or 0.25 mM Cu2+.
  • 34. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Aliphatic carboxylic acid intermediates of Paracetamol Oxamic acid 50 O3 [oxamic acid] / mg L-1 O3/UVA 40 O3/Fe2+/UVA O3/Fe2+,Cu2+/UVA 30 20 10 0 0 60 120 180 240 300 t / min Conditions: 1 g O3 h-1, 25.0 °C, pH 3.0. 34 Added cation concentrations: 1.0 mM Fe2+ and/or 0.25 mM Cu2+.
  • 35. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Ions arising from Paracetamol mineralization NH4+ Ammonium ion 10 O3 O3/UVA 8 O3/Fe2+/UVA NH4+ / mg L-1 O3/Fe2+,Cu2+/UVA 6 4 2 0 0 60 120 180 240 300 t / min Conditions: 1 g O3 h-1, 25.0 °C, pH 3.0. 35 Added cation concentrations: 1.0 mM Fe2+ and/or 0.25 mM Cu2+.
  • 36. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Ions arising from Paracetamol mineralization NO3 Nitrate 45 O3 40 O3/UVA 35 O3/Fe2+/UVA NO3 / mg L-1 O3/Fe2+,Cu2+/UVA 30 25 20 15 10 5 0 0 60 120 180 240 300 t / min Conditions: 1 g O3 h-1, 25.0 °C, pH 3.0. 36 Added cation concentrations: 1.0 mM Fe2+ and/or 0.25 mM Cu2+.
  • 37. Proposal of a degradation pathway for the mineralization of Paracetamol acetamide Fe3+ - oxamato oxamic acid complexes CO2 NO3-, NH4+ Cu2+ - oxamato complexes glycolic acid glyoxylic acid 2-hydroxy-4(N-acetyl)aminophenol paracetamol tartronic acid ketomalonic acid oxalic acid Fe3+ - oxalato Cu3+ - oxalato complexes complexes 37 hydroquinone p-benzoquinone maleic acid CO2
  • 38. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Mineralization of Chloroxylenol by EAOPs 38
  • 39. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Chloroxylenol mineralization by ozonation: inefficient 70 O3 60 O3/UVA O3/Fe2+/UVA [TOC] / mg L-1 50 40 30 20 10 0 0 60 120 180 240 300 t / min Conditions: 1 g O3 h-1, 25.0 °C, pH 3.0. 39 Added cation concentrations: 1.0 mM Fe2+ and/or 0.25 mM Cu2+.
  • 40. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Experimental device for electrolyses 40
  • 41. Experimental device for electrolyses Electrodic configurations for Electrochemical Advanced Oxidation Processes Platinum anode + Stainless steel cathode: Pt-AO method magnetic stirrer 41
  • 42. Electrodic configurations for Electrochemical Advanced Oxidation Processes BDD anode + Stainless steel cathode: BDD-AO method magnetic stirrer 42
  • 43. Electrodic configurations for Electrochemical Advanced Oxidation Processes Pt anode + O2-diffusion cathode : Pt-EF method magnetic stirrer 43
  • 44. Electrodic configurations for Electrochemical Advanced Oxidation Processes BDD anode + O2-diffusion cathode : BDD-EF method magnetic stirrer 44
  • 45. Electrodic configurations for Electrochemical Advanced Oxidation Processes BDD anode + O2-diffusion cathode: BDD-PEF method magnetic stirrer 45
  • 46. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Electrolysis of chloroxylenol with platinum and BDD anodes. 70 Pt anode; (Pt-AO treatment 60 BDD anode; (BDD-AO treatment) 50 [TOC] / mg L-1 40 30 20 10 0 0 120 240 360 t / min Counter electrode: stainless steel cathode, 46 j = 100 mA cm-2, pH 3.0, 25°C
  • 47. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Effect of current density on BDD-AO treatment 70 33 mA cm-2 60 100 mA cm-2 150 mA cm-2 50 [TOC] / mg L-1 40 30 20 10 0 0 120 240 360 480 600 t / min 47 Conditions: pH 3.0, 25°C
  • 48. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Charge (Q) consumption during BDD-AO treatment at different applied current densities 80 33 mA cm-2 70 100 mA cm-2 60 150 mA cm-2 [TOC] / mg L-1 50 40 30 20 10 0 0 10 20 30 Q / AhL-1 48 Conditions: pH 3.0, 25°C
  • 49. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Charge (Q) consumption during Pt-EF treatment at different applied current densities 70 33 mA cm-2 60 100 mA cm-2 150 mA cm-2 50 [TOC] / mg L-1 40 30 20 10 0 0 10 20 30 Q / AhL-1 49 Conditions: pH 3.0, 25°C, 1.0 mM Fe2+
  • 50. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Charge (Q) consumption during BDD-EF treatment at different applied current densities 70 33 mA cm-2 60 100 mA cm-2 [TOC] / mg L-1 150 mA cm-2 50 40 30 20 10 0 0 10 20 30 Q / AhL-1 50 Conditions: pH 3.0, 25°C, 1.0 mM Fe2+
  • 51. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Testing of several EAOPs on chloroxylenol 70 Pt-AO 60 BDD-AO Pt-EF 50 [TOC] / mg L-1 Pt-PEF 40 BDD-EF BDD-PEF 30 20 10 0 0 120 240 360 480 t / min Conditions: j = 33 mA cm-2, pH 3.0, 25°C. 51 1.0 mM Fe2+ in EF-treatments
  • 52. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Abatement of Chloroxylenol Pt-AO, 33 mA cm-2 100 [Chloroxylenol] / mg L-1 BDD-AO, 33 mA cm-2 BDD-AO, 100 mA cm-2 80 BDD-AO, 133 mA cm-2 60 40 20 0 0 120 240 360 480 600 720 t / min 52 Conditions: pH 3.0, 25.0 °C.
  • 53. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Chloroxylenol abatement kinetics under different electro-Fenton EAOPs 120 5 Pt-EF [Chloroxylenol] / mg L-1 Pt-PEF 100 4 BDD-EF ln[C0/Ct] 3 BDD-PEF 80 2 60 1 40 0 k’ / 10-3 s-1 0 2 4 6 8 10 12 t / min 20 6.2 6.3 0 6.4 0 5 10 15 20 25 6.9 t / min 53 Conditions: j = 33 mA cm-2, pH 3.0, 25.0 °C, 1.0 mM Fe2+
  • 54. GC-MS-identified Chloroxylenol intermediates 2,6-dimethylhydroquinone 2,6-dimethyl-p-benzoquinone 3,5-dimethyl-2-hydroxy-p-benzoquinone 54
  • 55. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Chloroxylenol aromatic intermediates 2,6-dimethyl-p-benzoquinone [2,6-dimethyl-p-benzoquinone] / mg L-1 40 35 Pt-AO 30 BDD-AO 25 20 15 10 5 0 0 2 4 6 8 10 12 14 16 18 t/h 55 Conditions: j = 33 mA cm-2, pH 3.0, 25.0 °C.
  • 56. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Chloroxylenol intermediates 2,6-dimethyl-p-benzoquinone [2,6-dimethyl-p-benzoquinone] / mg L-1 10 Pt-EF 9 Pt-PEF 8 BDD-EF 7 BDD-PEF 6 5 4 3 2 1 0 0 5 10 15 20 25 t / min 56 Conditions: j = 33 mA cm-2, pH 3.0, 25.0 °C, 1.0 mM Fe2+
  • 57. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Chloroxylenol intermediates Pyruvic acid 25 Pt-EF 20 Pt-PEF [pyruvic acid] / mg L-1 BDD-EF BDD-PEF 15 10 5 0 0 20 40 60 80 t / min 57 Conditions: j = 33 mA cm-2, pH 3.0, 25.0 °C, 1.0 mM Fe2+
  • 58. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Chloroxylenol intermediates Acetic acid 35 Pt-EF Pt-PEF 30 BDD-EF [acetic acid] / mg L-1 25 BDD-PEF 20 15 10 5 0 0 60 120 180 240 300 360 420 t / min 58 Conditions: j = 33 mA cm-2, pH 3.0, 25.0 °C, 1.0 mM Fe2+
  • 59. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Chloroxylenol intermediates Oxalic acid 40 35 [oxalic acid] / mg L-1 30 25 20 Pt-EF 15 Pt-PEF BDD-EF 10 BDD-PEF 5 0 0 60 120 180 240 300 360 420 t / min 59 Conditions: j = 33 mA cm-2, pH 3.0, 25.0 °C, 1.0 mM Fe2+
  • 60. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Ions Chloride anion, Cl- 25 20 Pt-AO [Cl-] / mg L-1 BDD-AO 15 Pt-EF Pt-PEF BDD-EF 10 BDD-PEF 5 0 0 120 240 360 480 t / min 60 Conditions: j = 33 mA cm-2, pH 3.0, 25.0 °C, 1.0 mM Fe2+
  • 61. Proposed degradation pathway for the mineralization of Chloroxylenol OH(BDD) , OH(Pt), OH(BDD) , OH(Pt), OH(BDD) , OH(Pt), OH OH OH Cl- chloroxylenol 2,6-dimethylhydroquinone 2,6-dimethyl-p-benzoquinone 3,5-dimethyl-2-hydroxy- p-benzoquinone OH(BDD) OH OH(BDD) ketomalonic acid CO2 OH(BDD) h oxalic acid Fe3+ OH(BDD) OH(BDD) , OH(Pt), OH OH Fe3+ - oxalato complexes maleic acid OH(BDD) h Fe3+ - acetato Fe3+ OH(BDD) complexes OH 61 pyruvic acid acetic acid
  • 62. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Mineralization of Ibuprofen by EAOPs 62
  • 63. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Electrolysis of Ibuprofen with platinum and BDD anodes. 35 Pt anode; (Pt-AO treatment 30 BDD anode; (BDD-AO treatment) 25 [TOC] / mg L-1 20 15 10 5 0 0 120 240 360 480 t / min 63 Counter electrode: stainless steel cathode, j = 33 mA cm-2, pH 3.0, 25°C
  • 64. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Electrolysis of Ibuprofen by several BDD-AO treatments 35 BDD-AO 30 BDD-AO/UVA BDD-AO /Fe2+/UVA 25 [TOC] / mg L-1 BDD-AO at pH 6 20 15 10 5 0 0 120 240 360 480 t / min j = 33 mA cm-2, 25.0 °C 64 pH 3.0 unless otherwise specified, 1.0 mM Fe2+ when added
  • 65. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Testing of several Electro-Fenton EAOPs on Ibuprofen 35 Pt-EF 30 Pt-PEF BDD-EF [TOC] / mg L-1 25 BDD-PEF Pt-SPEF 20 BDD-SPEF 15 10 5 0 0 120 240 360 480 t / min 65 Conditions: j = 33 mA cm-2, pH 3.0, 25.0 °C, 1.0 mM Fe2+
  • 66. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Testing of several Electro-Fenton EAOPs on Ibuprofen Mineralization Current Efficiency 35 Pt-EF 30 Pt-PEF 25 BDD-EF [MCE] / % BDD-PEF 20 Pt-SPEF BDD-SPEF 15 10 5 0 0 120 240 360 480 Q / AhL-1 66 Conditions: j = 33 mA cm-2, pH 3.0, 25.0 °C, 1.0 mM Fe2+
  • 67. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Testing of several Fe2+ catalyst concentrations on BDD-PEF 35 0.1 mM 30 0.2 mM 25 [TOC] / mg L-1 0.5 mM 1.0 mM 20 2.0 mM 15 10 5 0 0 120 240 360 480 t / min 67 Conditions: j = 33 mA cm-2, pH 3.0, 25.0 °C.
  • 68. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac BDD-PEF treatment on Ibuprofen pH effect 35 pH 2 30 pH 3 25 [TOC] / mg L-1 pH 4 pH 6 20 15 10 5 0 0 120 240 360 480 t / min 68 Conditions: j = 33 mA cm-2, 25.0 °C, 1.0 mM Fe2+
  • 69. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac BDD-PEF treatment on Ibuprofen current density study 35 3.3 mA cm-2 30 6.6 mA cm-2 25 [TOC] / mg L-1 13.3 mA cm-2 33.3 mA cm-2 20 100 mA cm-2 15 10 5 0 0 60 120 180 240 300 360 420 t/h 69 Conditions: 25.0 °C, pH 3.0, 1.0 mM Fe2+
  • 70. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Ibuprofen abatement kinetics under Pt and BDD anodic oxidation EAOPs 45 4 Pt-AO 40 [Ibuprofen] / mg L-1 BDD-AO 3 35 ln[C0/Ct] 30 2 25 1 20 k’ / 10-4 s-1 15 0 2.67 10 0 60 120 180 240 300 4.86 t / min 5 0 0 60 120 180 240 300 t / min 70 Conditions: j = 33 mA cm-2, 25.0 °C, pH 3.0, stainless steel cathode.
  • 71. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Ibuprofen abatement kinetics under different electro-Fenton EAOPs Pt-EF 45 4 Pt-PEF 40 BDD-EF [Ibuprofen] / mg L-1 3 35 BDD-PEF ln[C0/Ct] Pt-SPEF 30 2 BDD-SPEF 25 1 20 15 0 10 0 10 20 30 k’ / 10-3 s-1 t / min 5 1.86 0 2.00 2.06 0 10 20 30 40 50 2.08 t / min 71 Conditions: j = 33 mA cm-2, 25.0 °C, pH 3.0, 1.0 mM Fe2+
  • 72. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Ibuprofen abatement kinetics at different current intensities under BDD-PEF treatment 45 4 6.6 mA cm-2 40 [Ibuprofen] / mg L-1 13.3 mA cm-2 3 35 33.3 mA cm-2 ln[C0/Ct] 30 2 25 1 20 15 0 k’ / 10-3 s-1 10 0 10 20 30 40 50 t / min 1.32 5 1.52 0 2.08 0 60 120 t / min 72 Conditions: 25.0 °C, pH 3.0, 1.0 mM Fe2+
  • 73. GC-MS-identified Ibuprofen intermediates 2-(4-isobutylphenyl)-2-hydroxypropionic acid 4-isobutylacetophenone 4-isobutylphenol 73 2-[4-(1-hydroxyisobutyl)phenyl]propionic acid 4-ethylbenzaldehyde
  • 74. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Ibuprofen intermediates 4-isobutylacetophenone [4-isobutylacetophenone] / mg L-1 -1.5 Diclofenac Pt-EF Pt-PEF BDD-EF 1 BDD-PEF Pt-SPEF BDD-SPEF 0.5 0 0 20 40 60 80 t / min 74 Conditions: j = 33 mA cm-2, 25.0 °C, pH 3.0, 1.0 mM Fe2+
  • 75. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Ibuprofen intermediates Oxalic acid 25 [oxalic acid] / mg L-1 20 15 Pt-EF Pt-PEF 10 BDD-EF - Diclofenac BDD-PEF 5 Pt-SPEF BDD-SPEF 0 0 60 120 180 240 300 360 420 t / min 75 Conditions: j = 33 mA cm-2, 25.0 °C, pH 3.0, 1.0 mM Fe2+
  • 76. Proposal of a degradation pathway for the mineralization of Ibuprofen OH(BDD) , OH(Pt), OH(BDD) , OH(Pt), OH(BDD) , OH(Pt), OH OH OH OH(BDD) OH(Pt) 2-(4-isobutylphenyl)- OH Ibuprofen 4-isobutylacetophenone 4-isobutylphenol 2-hydroxypropionic acid OH(BDD) , OH(Pt), OH OH(BDD) + OH(Pt) OH(BDD) , OH(Pt), acetic acid pyruvic acid OH (+ Fe3+ - acetato OH CO2 complexes) OH(BDD) h OH(BDD) + 2-[4-(1-hydroxyisobutyl)phenyl] 4-ethylbenzaldehyde 76 oxalic acid formic acid propionic acid (+ Fe3+ - oxalato complexes)
  • 77. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Mineralization of Diclofenac by EAOPs 77
  • 78. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Preliminar considerations Diclofenac sodium salt: very low solubility in acidic medium Impossibility of applying Electrofenton methods Alternative treatment: Solid Polymer Electrolyte (Nafion 324) between 2 mesh-BDD electrodes 78
  • 79. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac New electrodic configurations 1st NbBDD mesh electrode Nafion® 324 membrane (SPE) 2nd NbBDD mesh electrode NbBDD/SPE/NbBDD ensambling 79
  • 80. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac new electrodic configurations Electrodic system Na2SO4 as background electrolyte? NbBDD/SPE/NbBDD Yes NbBDD/SPE/NbBDD-NS No NbBDD/NbBDD Yes 80
  • 81. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Diclofenac mineralization by EAOPs Nature of the anode 60 Pt-AO 50 BDD AO TOC / mg L-1 40 30 20 10 0 0 60 120 180 240 300 360 420 t / min 81 Conditions: j = 100 mA cm-2, 35.0 °C, pH 6.0, stainless steel cathode.
  • 82. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Diclofenac mineralization by EAOPs NbMBDD ensambled configurations 60 NbMBDD/SPE/NbMBDD 50 NbMBDD/NbMBDD NbMBDD/SPE/NbMBDD-NS 40 TOC / mg L-1 30 20 10 0 0 60 120 180 240 300 360 420 t / min 82 Conditions: j = 100 mA cm-2, 35.0 °C, pH 6.0.
  • 83. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Diclofenac abatement under several applied EAOPs 120 Pt-AO 100 BDD-AO [Diclofenac] / mg L-1 NbBDD/SPE/NbBDD 80 NbBDD/NbBDD NbBDD/SPE/NbBDD-NS 60 40 20 0 0 60 120 180 240 300 360 420 t / min 83 Conditions: j = 100 mA cm-2, 35.0 °C, pH 6.0.
  • 84. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Generated concentration of ozone during EAOPs P t-A O B D D -A O N bM B D D /N b M B D D N bM B D D /S P E /N b M B D D N bM B D D /S P E /N b M B D D -N S 0 2 4 6 8 -7 [O ] / 1 0 M 3 84 Conditions: j = 100 mA cm-2, 35.0 °C, pH 6.0.
  • 85. GC-MS-identified Diclofenac intermediates 2,6-dichloroaniline 2-hydroxyphenylacetic acid 4-amino-3,5-dichlorophenol 2,5-dihydroxyphenylacetic acid 2,6-dichlorohydroquinone 85
  • 86. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Diclofenac aromatic intermediates 2,6-Dichloroaniline 0.8 [2,6-Dichloroaniline] / mg L-1 BDD-AO 0.7 NbBDD/SPE/NbBDD 0.6 NbBDD/NbBDD NbBDD/SPE/NbBDD-NS 0.5 0.4 0.3 0.2 0.1 0 0 120 240 360 t / min 86 cm-2, Conditions: j = 100 mA 35.0 °C, pH 6.0.
  • 87. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Diclofenac aromatic intermediates 2,6-Dichlorohydroquinone [2,6-Dichlorohydroquinone] / mg L-1 18 Pt-AO 16 BDD-AO NbBDD/SPE/NbBDD 14 NbBDD/NbBDD 12 NbBDD/SPE/NbBDD-NS 10 8 6 4 2 0 0 120 240 360 480 t / min 87 Conditions: j = 100 mA cm-2, 35.0 °C, pH 6.0.
  • 88. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Diclofenac aliphatic carboxylic intermediates Oxalic acid 25 Pt-AO BDD-AO [oxalic acid] / mg L-1 20 NbBDD/SPE/NbBDD NbBDD/NbBDD NbBDD/SPE/NbBDD-NS 15 10 5 0 0 120 240 360 t / min 88 Conditions: j = 100 mA cm-2, 35.0 °C, pH 6.0.
  • 89. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Ions arising from Diclofenac degradation Cl- Chloride 25 Pt-AO NbBDD/NbBDD BDD-AO NbBDD/SPE/NbBDD-NS 20 NbBDD/SPE/NbBDD [chloride] / mg L-1 15 10 5 0 0 60 120 180 240 300 360 420 t / min 89 Conditions: j = 100 mA cm-2, 35.0 °C, pH 6.0.
  • 90. - Paracetamol - Chloroxylenol Degradation Studies - Ibuprofen - Diclofenac Ions arising from Diclofenac degradation NO3- Nitrate 5 Pt-AO NbBDD/NbBDD BDD-AO NbBDD/SPE/NbBDD-NS 4 NbBDD/SPE/NbBDD [NO3-] / mg L-1 3 2 1 0 0 60 120 180 240 300 360 420 t / min 90 Conditions: j = 100 mA cm-2, 35.0 °C, pH 6.0.
  • 91. Proposal of a degradation pathway for the mineralization of diclofenac 2,5-dihydroxyphenylacetic acid acetic acid OH(BDD) , OH(Pt), OH(Pt), OH OH(BDD), OH(BDD), OH OH(BDD) OH(Pt), OH 2-hydroxyphenylacetic acid OH(BDD), OH(Pt), OH OH(BDD) oxalic acid OH(BDD), + diclofenac OH(Pt), OH CO2 OH(BDD), OH(Pt), OH OH(BDD), OH(BDD) 2,6-dichloroaniline OH OH(Pt), formic acid 2,6-dichlorohydroquinone 91 4-amino-3,5-dichlorophenol
  • 92. Conclusions 92
  • 93. Conclusions  Supplied ozone flow and temperature do not have influence on neither Paracetamol mineralization rate nor its attained mineralization extent  pH 3 is optimal for catalized ozonation treatments (ideal for the generation of OH through Fenton reaction)  Direct ozonation leads to poor mineralization extent -quickly removal of paracetamol and aromatic intermediates -inefficient degradation of aliphatic carboxylic intermediates, especially oxalic and oxamic acids. 93
  • 94.  Addition of Cu2+ and Fe2+ and UVA radiation boost mineralization of paracetamol. - enables Fenton and photo-Fenton processes to take place - photolysis of O3-resistant Fe3+-oxalato complexes  Oxidation methods based on the BDD anode display higher degradation rates and larger attained mineralization extents than those based on the Pt anode  For EAOPs based on the stainless steel cathode, chloroxylenol, ibuprofen, diclofenac and their aromatic degradation intermediates undergo a slow degradation and stay in solution for hours 94
  • 95.  For EAOPs based on the oxygen diffusion cathode, chloroxylenol, ibuprofen, diclofenac and their aromatic degradation products are quickly destroyed within minutes  EAOPs with supply of UVA radiation and based on BDD anode display the highest degradation rates for these PPCPs and their intermediates  Low solubility of Diclofenac at acidic pH does not allow application of Electro- Fenton treatments. Instead, Niobium-based mesh BDD (NbMBDD) electrode assemblies with a Nafion membrane are used  EAOPs based on these assemblies are less efficient for mineralization than electrodic configurations consisting of BDD anode and stainless steel cathode 95
  • 96.  Electrodic configuration consisting of an assembly of two NbMBDD electrodes with a Nafion membrane between them working as SPE in absence of background electrolyte generates higher amounts of ozone than the other. - under this treatment, aromatic species are removed much faster from solution - alyphatic carboxylic acids are not completely eliminated under these conditions: inefficient mineralization 97
  • 97. Thank you for your attention! Gràcies per la vostra atenció!

×