Your SlideShare is downloading. ×
Putting IBM Watson to Work.. Saxena
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Saving this for later?

Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime - even offline.

Text the download link to your phone

Standard text messaging rates apply

Putting IBM Watson to Work.. Saxena

1,858
views

Published on

Discover what comes next for IBM Watson and the industries particularly suited for Watson solutions, such as healthcare, banking, and the financial sector. All of which deal with massive amounts of …

Discover what comes next for IBM Watson and the industries particularly suited for Watson solutions, such as healthcare, banking, and the financial sector. All of which deal with massive amounts of unstructured data coming from various sources. Find out how the advanced analytics used in Watson are being put to work in businesses around the world.

Published in: Technology

1 Comment
3 Likes
Statistics
Notes
No Downloads
Views
Total Views
1,858
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
70
Comments
1
Likes
3
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. IBM  Watson    Making  a  Market,  Making  a  Difference      Manoj  Saxena    General  Manager,  IBM  Watson  Solu:ons © 2012 IBM Corporation
  • 2. On  February  14,  2011,  IBM  Watson  made  history     Result  of  IBM  Research  “Grand  Challenge”   © 2012 IBM Corporation2
  • 3. Brief  history  of  IBM  Watson   IBM   Jeopardy!   Watson     Watson     Watson     Research  Project     Grand  Challenge   for   for  Financial   Industry   (2006  –  )   (Feb  2011)   Healthcare   Services   Solu1ons   (Aug  2011  –)   (Mar  2012  –  )   (2012  –  )   Cross-­‐industry     Expansion   Applica1ons   Commercializa1on   Demonstra1on   R&D   New  Division   © 2012 IBM Corporation3
  • 4. The  world  is  geTng  smarter   + + Instrumented   Interconnected   Intelligent   Over  10  billion   2  billion  people   Stockholm   CPUs  were   were  on  the   leverages  GPS  data   produced  in   Web  by  2011  ...   to  predict  traffic  –   2008,  up  1000%   with  a  trillion   reducing   connected   conges:ons  and   in  8  years.     objects.   emissions.  4 © 2012 IBM Corporation
  • 5. Businesses  are  “dying  of  thirst  in  an  ocean  of  data”   90%       80%   20%   of  the  world’s  data    of  the  world’s   is  the  amount  of   was  created  in  the   data  today  is   available  data   last  two  years   unstructured   tradi:onal  systems   leverages   1  in  2   83%   2.2X   business  leaders   of  CIOs  cited  BI  and   more  likely  that  top   don’t  have  access  to   analy:cs  as  part  of  their   performers  use   data  they  need   visionary  plan   business  analy:cs   © 2012 IBM Corporation
  • 6. So  why  is  it  so  hard  for  computers  to  understand  humans?   Person Organization “If leadership is an art L. Gerstner IBM then surely Jack Welch Welch ran has proved himself a this? J. Welch GE master painter during W. Gates Microsoft his tenure at GE.”   Noses that run and feet that smell?   How can a house can burn up as it burns down?   Does CPD represent a complex comorbidity of lung cancer?   What mix of zero-coupon, non-callable, A+ munis fit my risk portfolio? © 2012 IBM Corporation
  • 7. IBM  Watson  brings  together  transforma:onal  technologies  to  drive  op:mized  outcomes   2  Generates  and   evaluates   hypothesis  for  1   Understands     beZer  outcomes   natural  language   99%   and  human   60%   10%   speech   3   Adapts  and   Learns  from   user  responses   …built  on  a  massively  parallel   architecture  op4mized  for  POWER7   © 2012 IBM Corporation
  • 8. How  Watson  Works:  DeepQA  Architecture   Learned Models help combine and weigh the Evidence Evidence Sources Balance Answer Models Models & Combine Sources DeepInquiry Answer Evidence Models Models Evidence Scoring Retrieval Scoring Primary Candidate 100,000’s Scores from many Deep Analysis Models Models Search Answer 1000’s of Generation Pieces of Evidence Algorithms 100’s Possible Answers 100’s sourcesInquiry/Topic Inquiry Hypothesis Hypothesis and Evidence Final Confidence Multiple Synthesis Generation Scoring Merging & Ranking Interpretations DecompositionAnalysis of a question Hypothesis Hypothesis and Evidence Generation Scoring Responses with Confidence © 2012 IBM Corporation
  • 9. Moving    beyond  Jeopardy!  is  a  non-­‐trivial  challenge   Watson  at  Play   Watson  at  Work   1  User     10s  of  thousands  concurrent  users   Max.  input  was  two  sentences   Pages  of  input  (e.g.  medical  record)   5+  days  to  retrain   Dynamic  content  inges:on   Evidence  not  present   Suppor:ng  evidence  integral   Text-­‐only  input   Text,  tables  and  images  as  input   Q&A  model   Both  Q&A  +  Conversa:on  model   Basic  security   High  security  (e.g.  HIPAA)     © 2012 IBM Corporation
  • 10. Healthcare  industry  is  beset  with  some  of  the  most  complex  informa:on  challenges  we  collec:vely  face   Medical  informa:on   is  doubling  every  5   years,  much  of  which   is  unstructured         81%  of  physicians   report  spending  5   hours  or  less  per   month  reading   medical  journals       “Medicine  has  become  too  complex.  Only  about  20%  of  the  knowledge  clinicians                use  today  is  evidence-­‐base.” Steven  Shapiro,  Chief  Medical  &  Scien1fic  Officer,  UPMC   © 2012 IBM Corporation
  • 11. PuTng  the  pieces  together  at  point  of  impact  can  be  life  changing   difficulty swallowing Symptoms Family Medications Findings Symptoms fever Patient dry mouth Diagnosis  Models   Confidence   thirst History A Her medications werepositive forher 58-year-old woman presented to of A 58-year-old woman levothyroxine, urine dipstick was complains anorexia Historyprimary care esterase and dry mouth,and leukocyte physician pravastatin, hydroxychloroquine,after several days dizziness, anorexia, nitrites. The of dizziness, given aand frequent fo increased anorexia, dry mouth, alendronate. patient thirst, prescription frequent urination dizziness no abdominal pain Renal Failure UTI increased thirst, notable forhadtract Herurination. Sheand frequent urination. Herhistory historyfor aalso cutaneous ciprofloxacin had urinary a and family was included oral fever. no back pain no coughSheShe reported3 a fever in mother, lupus, hyperlipidemia, andpatient had also cancerpain osteoporosis,that bladder hadno in her her abdomen, infection. days later, reported no diarrhea food woulddisease in twoor diarrhea. reported weakness and sisters, was Gravesand nostuck” when she back, “get cough, dizziness. Diabetes frequent urinary tract infections, a left Oral cancer swallowing. Shefor inbenign cyst, and hemochromatosis a one no pain in her Her supine reported sister, and oophorectomy blood pressure was History Bladder cancer Family abdomen,mm Hg, and pulse wascough, primary hypothyroidism,and no 88. a 120/80 back, or flank diagnosed idiopathic thrombocytopenic Hemochromatosis Influenza shortness of breath, diarrhea, or dysuria purpura inearlier Purpura year one sister Graves’ Disease (Thyroid Autoimmune) Hypokalemia cutaneous lupus Medications History Patient osteoporosis hyperlipidemia Esophagitis frequent UTI hypothyroidism •  Extract Symptoms from record Alendronate Most Confident Diagnosis: Esophagitis Most Confident Diagnosis: Influenza UTI Diabetes •  Use paraphrasings mined from text to handle pravastatin • • Extract Medications and variants • •  Extract Patient History Identify Family History Extract negative Symptoms alternate phrasings levothyroxine • • Use database mined relationsgeneralize medical •  Reason with Taxonomies to to explain away Use Medical of drug side-effects •  Perform broad search for possible diagnoses hydroxychloroquine • • Together, multiple is consistent w/ bestthe models symptoms (thirst granularity may UTI) explain conditions to the diagnoses used bybased on Score Confidence in each diagnosis symptomsso far evidence urine dipstick: Findings •  Extract Findings: Confirms that UTI was present leukocyte esterase supine 120/80 mm HG heart rate: 88 bpm urine culture: E. Coli11 © 2012 IBM Corporation
  • 12. Cancer  is  an  insidious  disease  and  the  second  highest   cause  of  death     1  in  3   3X   individuals  will  die     rate  cancer  cost  climbs  vs.   from  cancer   std.  health  costs  or   15-­‐18%  /  yr.   X + + IBM 20%   $263.8B   Workingin  Together to Beat Cancerof  cancer  cases  receive  the   overall  costs  of  cancer     wrong  diagnosis  ini:ally   the  US  in  2010   with  some  as  high  as  44%   $$$$$$$$$$$$ ✔ ✔ $$$$$$$$$$$$ ✔ ✔ ✔ ✔ ✔ $$$$$$$$$$$$ $$$$$$$$$$$$ + + IBM Working Together to Beat Cancer Source: American Cancer Society, National Health Institute 12 © 2012 IBM Corporation
  • 13. IBM Watson goes to work in healthcare 1.  Accelerate  Time  to   2.    Improve  Decisions     Clinical  Insights            and  Outcomes   Support  researchers  and  clinicians   Assist  physicians  and  care  providers   in  discovery  of  new  cancer   with  evidence  based  diagnosis  and   therapies   treatment   Care   Provider  Genomic  Researcher   Analy:cs   Expert   Pa:ent   Therapy   Designer   Oncologist   MEDICAL  RESEARCH   MEDICAL  PRACTICE  &  PAYMENTS     13 Ultimate Goal: Become the Most Essential Company © 2012 IBM Corporation
  • 14. Demonstra:on  of  Watson  Cancer  Care  Solu:on   IBM Watson Oncology Advisor IBM Confidential: References to potential future products are subject to the Important Disclaimer provided earlier in the presentation14 © 2012 IBM Corporation
  • 15. Watson  enables  three  classes  of  cogni:ve  solu:ons   Ask     •   Leverage  vast  amounts  of  data   •   Ask  ques:ons  for  greater  insights   •   Natural  language  inquiries   •   e.g.  -­‐  Next  genera:on  Chat         Discover   • Find  the  ra:onale  for  given  answers   • Prompt  for  inputs  to  yield  improved  responses   • Inspire  considera:ons  of  new  ideas     • e.g.  -­‐  Next  genera:on  Search    Discovery   Decide     • Ingest  and  analyze  domain  sources,  info  models   • Generate  evidence  based  decisions  with  confidence   • Learn  with  new  outcomes  and  ac:ons   • e.g.  -­‐  Next  genera:on  Apps    Probabilis:c  Apps  15 © 2012 IBM Corporation
  • 16. Imagine if… … call center agents could find better answers to customer questions 50% faster. That’s exactly what a major provider of financial management software did. “Contact centers of the future will improve precision and personalization, transforming centers from a cost orientation to a strategic assets.” - Leading Telco Supplier ASK16 © 2012 IBM Corporation
  • 17. Imagine if… . . . new insights from medical research find their way to patient treatment programs in months instead of years? That’s exactly what a global leader in cancer care is doing today. “Watson will be an invaluable resource for our physicians and will dramatically enhance the quality and effectiveness of medical care.” - Dr Sam Nussbaum, Chief Medical Officer, WellPoint17 DISCOVER © 2012 IBM Corporation
  • 18. Imagine if… . . . the 1.5M people diagnosed with cancer in the US last year had a better prognosis? That’s exactly what a major health plan provider is working to accomplish. “Watson can aggregate information and give probabilities that will enable (experts) to zero in on the most likely diagnosis.” - Dr. Steven Nissen, Cleveland Clinic DECIDE18 © 2012 IBM Corporation
  • 19. How  it  Works:  Watson  Technology  &  Infrastructure   Watson  for   Watson  For   Watson  for  Client   Watson  for   Healthcare   Financial  Svcs.   Engagement   Industry   Advisor  Solu1ons   Advisor  Solu1ons   Advisor  Solu1ons   Ins1tu1onal   Re1rement   Knowledge   Call  Center   U1liza1on   Ins1tu1on   Help  Desk   Oncology   Technical   Diabetes   Cardiac   Banking   ASK Services DISCOVER Services DECISION Services NLP & Machine Big Data Analytics Cloud Mobile Workload Optimized Learning Systems Source Model Train Learn19 © 2012 IBM Corporation
  • 20. How  it  Works:  Cloud  Delivery  and  Outcome  Based  Pricing   Dynamic  Capacity   Hybrid  Delivery   Automate  and  control     Extend  &  integrate     service  provisioning   on-­‐premise  solu:on       with  cloud  offering   Flexible   Consump1on   Time  to  Value   Support  alterna:ve     Enable  incremental   delivery  and  value       automa:on  and   pricing  models   business  agility  20 © 2012 IBM Corporation
  • 21. Getting Started  with  Watson     GeTng   Started with Watson 1.  Discovery   2.  Pilots   3.  Scale  Out   Workshops   (6-­‐12  Months)   (Ongoing)   (4-­‐6  Weeks)   Step  1:     Op:on  A:   Step  3:       • Iden:fy  Candidate   Deploy  ini:al  pilot   • Add  Users   Use  Cases   • Build   • Add  Geographies   • Assess  Content   • Teach   • Add  Content   Availability   • Run   • Expand  Processes   • Model  Business       Op:on  B:   Value         Apply  Ready  for  Watson   Progression  Paths       • Smarter  Analy:cs   • Big  Data   • Industry  Solu:ons  21 © 2012 IBM Corporation
  • 22. Watson  is  ushering  in  a  new  era  of  compu:ng  .  .  .   System Intelligence Cogni1ve   Programma:c       Search   Discovery   Determinis:c   Probabilis:c   Enterprise  data   Big  Data   1 Tabula:on   Machine  language   Natural  language   Punch  cards   Time  card  readers   Simple  outputs   Intelligent  op:ons     1900 1950 2011  .  .  .enabling  new  opportuni:es  and  outcomes   122 IBM Confidential © 2012 International Business Machines Corporation
  • 23. Thank  you.   © 2012 IBM Corporation