Funcions
Upcoming SlideShare
Loading in...5
×
 

Funcions

on

  • 1,134 views

Presentació que he vaig trobar a internet i que vaig adaptar mínimament per aplicar-la a les meves classes.

Presentació que he vaig trobar a internet i que vaig adaptar mínimament per aplicar-la a les meves classes.

Statistics

Views

Total Views
1,134
Views on SlideShare
608
Embed Views
526

Actions

Likes
0
Downloads
11
Comments
0

4 Embeds 526

http://agora.educat1x1.cat 497
http://curseinesweb202011.blogspot.com 26
http://curseinesweb202011.blogspot.com.es 2
http://htmlcomponentservice.appspot.com 1

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment
  • FUNCIONES
  • FUNCIONES
  • FUNCIONES
  • FUNCIONES
  • FUNCIONES
  • FUNCIONES
  • FUNCIONES
  • FUNCIONES
  • FUNCIONES
  • FUNCIONES
  • FUNCIONES
  • FUNCIONES
  • FUNCIONES

Funcions Funcions Presentation Transcript

  • FUNCIONS Departament de Matemàtiques
  • 1. Coordenades en el pla 2. Eixos de coordenades. Quadrants 3. Relació donada per taules 4. Relació donada per gràfiques 5. Relacions donades per fórmules 6. Idea de funció 7. Representació gràfica de funcioes 8. La funció lineal o de proporcionalitat directa 9. Funcions afins 10. Funcions quadràtiques CONTINGUTS DEL TEMA 11. Funcions de proporcionalitat inversa 12. Resolució de problemes
  • 1. Coordenadas en el plano Observa : – La catedral està en el punt (1, 3). – L’ajuntament en el punt (4, 1). Per situar un punt en el pla es necessiten dues rectes perpendiculars que s’anomenen eixos de coordenades . El punt de tall dels eixos s’anomena origen .
    • La primera es mesura sobre l’eix horitzontal o de abscisses; s’anomena abscissa del punt.
    • La segona es mesura sobre l’eix vertical o d’ordenades; s’anomena ordenada del punt
    – El jardí botànic en el punt (7, 2). Aquest pla és el d’una ciutat. Qualsevol punt té dues coordenades . O Eix d’ordenades Eix d’abscisses Origen
  • Eix d’abscisses Eix d’ordenades I quadrant IV quadrant III quadrant II quadrant O Origen Agafem una quadrícula i dibuixem els eixos de coordenades. Tindrem: 2. Els eixos de coordenades: quadrants (I)
  • 2. Els eixos de coordenades: quadrants (II) Primer quadrant Quart quadrant Tercer quadrant Segon quadrant O Els eixos de coordenades divideixen el pla en quatre quadrants. (+, +) (– , +) (– , – ) (+, – )
    • Els punts del primer quadrant tenen abscissa i ordenada positives.
    • Els del segon quadrant tenen abscissa negativa i ordenada positiva.
    • Els del tercer quadrant tenen abscissa i ordenada negatives.
    • Els del quart quadrant tenen abscissa positiva i ordenada negativa.
    X Y
  • Cada punt del pla es designa per un parell ordenat (x,y) de nombres que s’anomenen coordenades del punt . Així: A (4, 1); B (-2, 1); C (0, 5); D (-3, -4); E (5, -5) El primer nombre x s’anomena abscissa ; el segon y , ordenada. Les abscisses positives estan a la dreta del origen. Les negatives, a l’esquerra . Les ordenades positives estan per sobre de l’origen. Les negatives, per sota. A(4, 1) B(-2, 1) C(0, 5) D(-3, -4) E(5, -5) 2. Els eixos de coordenades: quadrants (III) O
  • Una funció pot donar-se mitjançant una taula. Exemple : a la taula següent tenim la longitud d’un fetus (en cm) depenent del temps de gestació (en mesos). A cada mes de gestació li correspon una longitud determinada. (2, 4) significa que quan el fetus té 2 mesos, mesura 4 cm. (6, 29) indica que als 6 mesos el fetus mesura 29 cm . La longitud del fetus està en funció del temps de gestació. 3. Relacions donades per taules (I)
  • 3. Relacions donades per taules (II) El nivell d’aigua que s’assoleix en un recipient depèn del temps que l’aixeta estigui gotejant. Aquesta dependència o relació s’expressa a la següent taula: A la variable temps s’anomena variable independent , i a la variable nivell d’aigua, variable dependent . La dependència entre dues variables pot expressar-se mitjançant una taula.
  • 4. Relacions donades per gràfiques (I) En una etapa de la volta ciclista, a cada distància del punt de sortida li correspon una determinada altitud. . Aquesta dependència o relació s’expressa per la següent gràfica: A la variable quilòmetres recorreguts se l’anomena variable independent , y a la variable altura en metres, variable dependent . La dependència entre dues variables es pot expressar mitjançant una gràfica. Quan porten 100 km recorreguts és quan estan a més altitud.
  • Una funció pot expressar-se mitjançant una gráfica. Exemple : A la gràfica següent tenim el cosum de gasolina d’un cotxe segons la velocitat a la que circula. Si el cotxe va a 130 km/h, consumeix, aproximadament, 8 litres cada 100 km El consum mínim s’aconsegueix a 60 km/h: punt (60, 4) El consum de gasolina depèn (o està en funció ) de la velocitat del cotxe. 4. Relacions donades per gràfiques (II)
  • Si coneixes el costat d’un quadrat pots trobar la seva àrea. A cada valor del costat li correspon una àrea. L’ àrea és funció del costat: S = c 2 Costat Àrea S = c 2 A la variable costat c se l’anomena variable independent , i a la variable àrea, variable dependent . 5. Relacions donades per fórmules 1 cm 2 cm 3 cm c cm 1 cm 2 4 cm 2 9 cm 2 c 2 cm 2
  • Una altra relació donada per una fórmula: y = 2 x +1 Si x és -2, y = 2·(-2) +1 = -3. Parell (-2, -3) Si x és -1, y = 2·(-1) +1 = -1. Parell (-1, -1) Si x és 2, y = 2·2 +1 = 5. Parell (2, 5) Observa que a cada nombre x li correspon un únic nombre y . El nombre y depèn del valor donat a x . O també: y està en funció de x . A x se l’anomena variable independent . En aquest cas pot prendre qualsevol valor A y se l’anomena variable dependent . Pren valors que depenen de la x : y = 2 x +1 Les relacions d’aquest tipus s’anomenen funcions. En una funció, la correspondència entre las variables ha de ser única 6. Idea de funció (I)
  • 6. Idea de funció (II)
    • Funció: és una relació o correspondència entre dues magnituds, de manera que a cada valor de la primera li correspon un únic valor de la segona, que anomenem imatge .
    • Variable independent : la prefixada prèviament.
    • Variable dependent : la que es dedueix de la variable independent.
    La fórmul f(x) = 3x 2 + 1 defineix una funció. f(x) = 3x 2 + 1 Fixada la variable independent, per exemple x = 5 , el valor que pren la variable dependent és f(5) = 3 · 5 2 + 1 = 76 . ( La imatge de 5 és 76; i és única , ja que l’operació 3 · 5 2 + 1 és única.) Si x = 0, f(0) = 1. Si x = 1, f(1) = 4. Si x = –2, f(–2) = 13. A qualsevol funció a cada valor de la variable independent li correspon un únic valor de la variable dependent. x és la variable independent f(x) és la variable dependent
  • La fórmula que expressa l’àrea d’un quadrat en funció del seu costat és S = c 2 Per representar-la gràficament : Primer : construim la taula de valors Segon : representem els parells associats, fent la unió dels punts. Exemple: (2, 4) (3, 9) (4, 16) 7. Representació gràfica de funcions (I)
  • El preu del revelat d’un rodet de 36 fotos és de 1,50 euros i per cada foto cobren 0,35 euros. Representem la gràfica d’aquesta funció. Primer : construim la taula de valors Segon : representem els parells associats. Exemple: (En aquest cas no té sentit fer la unió dels punts: no es revelen fraccions de fotos.) Variable dependent Variable independent 7. Representació gràfica de funcions (II)
  • 7. Representació gràfica de funcions (III) La planta de l’Elena ha anat creixent amb el temps segons s’indica a la taula: Per representar-la gràficament: representem els parells de valors sobre uns eixos de coordenades i obtenim diferents punts de la gràfica. (2, 11) (6, 26) Fent la unió dels punts s’obté la gràfica de la funció.
  • 7. Representació gràfica de funcions (IV) Considerem la funció f que assigna a cada nombre enter el doble més 1. Per representar-la gràficament: En aquest cas no es pot fer la unió dels punts ja que la funció està definida únicament pels nombres enters. És a dir, f(x) = 2x + 1. 1. Construim la taula de valors. 2. Representem els parells de valors sobre uns eixos de coordenades. (2, 5) O (–3, –5)
  • Exemple: Si el preu d’un quilo de taronges és de 1,2 euros: (a) forma una taula que relacioni pes amb el preu. (b) representa la gràfica de la funció associada. Multiplicant per 1,2 el nombre de quilos, tenim: Dibuixant els parells (1, 1,2), (2, 2,4), … (7, 8,4), obtenim: La fórmula d’aquesta funció és : y = 1,2 x Les funcions tals que la seva gràfica és una recta que passa per l’origen s’anomenen funcions lineals o de proporcionalitat directa 8. Funció lineal o de proporcionalitat directa (I)
  • Representem gràficament altres funcions lineals. 5 1 y = 5x – 5 – 1 2 1 y = 2x 4 2 – 4 4 y = – x 3 – 3 0 0 y = 0,2x 1 5 8. Funció lineal o de proporcionalitat directa (II) Representa les següents funcions: a) y = x; b) y = –5x; c) y = 2x ; d) y = –x x y x y x y x y
  • 8. Funció lineal o de proporcionalitat directa (III) En comprar al supermercat un tall de formatge ens fixem en la seva etiqueta i que indiquem a continuació: 0,820 5,12 4,20 Les magnituds preu i pes són directament proporcionals. Si x és el pes en kg, i y el preu, la expressió que dona el preu en euros és y = 5,12x . Calculem valors, representem i fem la unió dels punts. Les funcions se la forma y = mx s’anomenen funcions lineals . Són rectes que passen por l’origen. · m és el pendent o inclinació de la recta. y = 5,12x Pes (kg) Euros Pes en kg Preu per kg en € Total en € 0,5 1 1,5 7 6 5 4 3 2 1
  • 9. Funcions afins (I). Representa les sigüents funcions: a) y = x +1 ; b) y = x – 3; c) y = 2x +3; d) y = 2x – 4 – 3 0 y = x – 3 1 4 – 4 0 y = 2x – 4 2 3 1 0 y = x + 1 4 3 3 0 y = 2x + 3 – 3 – 3 x y x y x y x y
  • 9. Funcions afins (II) Quan un espeleòleg s’endinsa cap a l’interior de la terra, la temperatura augmenta segons la següent fórmula: Construim la taula de valors: Representem gràficament la funció: t = 0,01 d + 15, (t és la temperatura en ºC; d , la profunditat en m) Temperatura (ºC) Profunditat (m) t = 0,01d + 15 Les funcions de la forma y = mx + n (n  0) s’anomenen funcions afins . Són rectes que no passen per l’origen. · m és el pendent o inclinació de la recta. · n és l’ordenada per x = 0, i s’anomena ordenada a l’ origen . 400 800 1200 18 12 6 O 24
  • 10. Funcions quadràques (I) Amb una corda de 40 cm és poden formar diferents rectangles. Quin serà el valor de la seva àrea? Representem els parells obtinguts: Construim una taula de valors: (a l’àrea l’anomenem y ) 2x + 2h = 40 x h x + h = 20 A = xh = x(20 – x) A = 20x – x 2 Perímetre: Àrea: h = 20 – x Unim els punts i s’obté la gráfica. 0 5 10 15 20
  • 10. Funcions quadràtiques (II) La gràfica de les funcions quadràtiques s’anomena paràbola. La funció y = 20x – x 2 , vista anteriorment, s’anomena funció quadràtica . Les funcions quadràtiques són de la forma y = ax 2 + bx + c amb a  0. Si a > 0 la paràbola té les branques cap a amunt. Si a < 0 la paràbola té les branques cap a avall . y = x 2 y = x 2 – 4x y = –x 2 + 2 y = –x 2 y = –x 2 – 3 a > 0 a < 0
  • 11. Funció de proporcionalitat inversa (I) Si el producte de dos nombres és 24, quins valors podem prendre aquests nombres? Representem els parells obtinguts i fem la unió dels punts: Construim la taula de valors: x · y = 24
  • 11. Funció de proporcionalitat inversa (II) Si el producte dels valors corresponents de dues magnituds x i y és constant, es diu que les magnituds són inversament proporcionals. La gràfica de les funcions de proporcionalitat inversa s’anomena hipèrbola. x · y = k o bé Les funcions de la forma s’anomenen funcions de proporcionalitat inversa .
  • Problema : Un cargol llisca per la vora d’una piscina a raó de 5 cm per minut. (a) Troba l’equacio associada a les magnituds espai recorregut i temps. (b) Representa aquesta funció 3r. La fórmula d’aquesta funció és : y = 5 x (c) Quant de temps trigarà en recòrrer 23 cm? 1r. Construim la taula 2n. Observem que les magnituds són directament proporcionals: 5 1 10 2 5 x x 1 per 5 2 per 5 x per 5 y = 5 x és una funció de proporcionalidtat directa . 12. Resolució de problemes (I) Temps (min): 1 2 3 4 5 6 … Espai (cm): 5 10 15 20 25 30 …
  • temps espai (2, 10) (1, 5) 23 4,6 4t. Representem els punts: (1, 5), (2, 10)... 5è. En recòrrer 23 cm trigarà 23 : 5 = 4,6 min Si y = 23, aleshores 23 = 5 x, per tant x = 23 : 5 Observa que les escales dels eixos són diferents Problema : Un cargol llisca per la vora d’una piscina a raó de 5 cm per minut. (a) Troba l’equació associada a les magnituds espai recorregut i temps. (b) Representa aquesta función. (c) Quant de temps trigarà en recòrrer 23 cm? Ya hemos visto que la función asociada es y = 5x 12. Resolució de problemes (II)