SlideShare a Scribd company logo
1 of 46
Chamonix France Feb 2009
      Pierre de Gennes Research Meeting

      Stretching Polymer Chains
                        by
                 Malcolm Mackley
                With acknowledgement to
  The Late Sir Charles Frank, Sir Michael Berry, The late
                     Andrew Keller.
       Dr Kris Coventry, Dr Tim Lord, Lino Selsci



Department of Chemical Engineering and Biotechnology
              University of Cambridge

                                                   1
Time line
• Pre 1970   Background
              “a bit of History” Tom Mcleish

•1970s       Stagnation point flows
              A slight digression “ Catastrophe”
             “Our financial friends” Armand Ajdari


•1980s       Real chain stretch
             “ we don’t understand entanglements” Ralph Colby

• 2005        Stagnation point flows;
             the Cross Slot
                                              2
             “use the inventions of others” Armand Ajdari
The stretching of liquid droplets G.I.Taylor 1934
   Four roll mill                                     Parallel Band




                                                                 Ca ≥ 1


                     Summarised by “The Grace diagram”

                                                  Simple shear
Capillary
number
    η γD
Ca = c           1                                            pure shear
       ν


                                         1
                                              Viscosity ratio of drop to matrix
 Capillary number criteria for drop deformation    Ca ≥ 1            3
The stretching of Polymer; Chains Peterlin and Ziabicki 1960s




                                                                   Kinetic Theory
Polymer                                                                   of
Chain extension                                                    Kuhn and Kuhn
                                                                       1940s




  β = γτ
             γ = strain rate, τ = chain relaxation time of polymer chain
              

    Β number criteria for polymer chain extension   β = γ τ ≥ 1
                                                                   4
Pioneers in Science 1970s

Charles Frank      Andrew Keller        Pierre de Gennes




Science             Science             Science
Geometry            Crystallisation     Scaling

                                             5
Albert Pennings; Groningen 1970




                                  6
Polyethylene




   Diamond




               7
1969
Sir Charles Frank                               Opposed jets




 B number criteria for chain extension   β = γ τ ≥ 1
                                                        8
Chain extension with opposed jets




B number criteria for chain extension   β = γ τ ≥ 1


                                                       9
Localized Flow Birefringence of Polyethylene Oxide Solutions in a
                       Four Roll Mill 1974




  Crowley et al. Journal of Polymer Science: Vol 14 1111-1119 (1976)

                                                                       10
B number criteria for chain extension

            β = γ τ ≥ 1
  Strain criteria for chain extension

             γ t ≥ γ 0
                                        11
The Two Roll Mill 1974




Confirms localisation in extensional flows

                                      12
A short digression.
Christopher Zeeman; University of Warwick 1970s




                                        13
Rene Thom;          Catastrophe Theory!
(Something our financiers and politicians should have studied !)




                                                        14
Catastrophe Theory

               The teaching of Christopher Zeeman!

             “dogs (or birds) ” meeting



Friendly
                                            Control Parameter;
                                            1 / distance apart


Aggressive



                                               15
Catastrophe Theory



                      The economy



Greed
                                                        Control Parameter;
                                                               Time



Contentment
              Margaret Thatcher   Tony Blair   Gordan Brown

                                                              16
Catastrophe Theory; The Six Roll Mill 1976




M.V.Berry and M.R. Mackley. Phil. Trans. Roy. Soc. Lond. 287, 1337, 1-16 (1977).
                                                                     17
18
Stream function for Six Roll Mill flow pattern



              1 3     2 1
φ (x, y) = γ ( x - x y ) - ω ( x 2 + y 2 ) - Vy x + Vx y
              3           2


                      dφ              dφ
               Vx =      ,   Vy = -
                      dy              dx




                                             19
The elliptic umbilic




                        Berry and Mackley
                       20
                        Bristol 1976
Berry and Mackley 1976
     21
The elliptic umbilic




                        Berry and Mackley
                       22
                        Bristol 1976
1980s Back to stretching chains!
Shish Kebab
Core;
Extended chain


Expect
E=100 GPa
Not usual
E=1 GPa




                                                    23
Paul Smith.   Piet Lemstra
Now ETH       Now TU Eindhoven




                       24
UHMWPE gel processing
                                  Piston




                                           1. Low entanglement UHMWPE polymer gel




                                                                    Solvent recovery
2. Unoriented Gel fibre



                                                       4. Hot draw
             Quench bath



                                                                      5. Oriented High Modulus Polyethylene


 3. Unoriented Low entanglement semi crystalline fibre

                              Schematic diagram of High Modulus Polyethylene (HMP) process


                      P. Smith, and P.J.Lemstra, J. Material. Sci. 1980, 15, 505
                                                                                             25
Continuous processing of UHMWPE Dyneema
                                                                  Solvent
                                                                   r
                                               UHM WPE Polymer powde
 Low entanglement polymer gel



                                                 Screw extrude r
Spinneret

                                                                       Solvent recovery
 Gel fibres



                                                            Hot draw

 Quench bath




                  Low entanglement semi crystalline fibre




            Schematic diagram of continuous High M odulus Polyethylene (HM P) process




                                                                                      26
2000
Whitstable
   UK




             27
2005
       Back to stagnation point flows
              The Cross-Slot

• Generate a hyperbolic
  pure shear flow pattern
  as shown.
• Near the walls the flow
  deviates from ideal.
• Along the symmetry axes
  rotation free pure extensional flow.

                                         28
The MultiPass Rheometer, (MPR) 1995

             MPR for Cross-Slot Flow 2005




• The MPR action modified
  for cross-slot flow
• Pistons force polymer melt
  through a cross-slot
  geometry

  Kris Coventry and Collaborative project with Leeds University; Tom Mcleish et al
                                                                                     29
Apparatus
                                             Servo-hydraulically
• Molten polymer is                          driven piston


  driven through test
  section by two servo-
  hydraulic pistons.
                                                            0.75 mm
                                            1.5 mm          radius
• Air pressure is used to   Slave piston
                            driven by air                             Slave piston
  return polymer so that    pressure                                  driven by air
                                                                      pressure
  multiple experiments                                      1.5 mm

  can be carried out.

                                              Servo-hydraulically
                                              driven piston




                                                           30
Apparatus




            31
Centre Section


                 3 cm




                 32
Cross Section of Apparatus
                                                    Hot oil supply                                     Camera lens
              Beam Focus




                                                                            Analyser
Light Source and           Polariser
monochromatic
                                       P, T Transducers

                                                                     Nitrogen supply (for cross-slot
                                                                     flow only)




                                                                                                33
Typical Result
-Dow PS680E
-Piston velocity of 0.5
mm/s (maximum
extension rate =4.3/s).


-Inlet slit
width=1.5mm
-Section depth=10mm
- T=180°C.

                                     34
Newtonian Simulation
                   Polyflow

Newtonian
Constitutive
Equation:
Viscosity =
7000 Pa.s




                                 35
Power Law Simulation
                 Polyflow

Power Law
Constitutive
Equation:
Effective
Viscosity =
7000*(0.3*γ)
^ 0.75 Pa.s



                             36
Integral Wagner Simulation
               Polyflow
- Integral Wagner
Constitutive
Equation
- 8 mode
relaxation
spectrum.
- Single damping
coefficient


                           37
Reptation based Pom-Pom Simulation
           Flowsolve (Leeds)


8 mode
Pom-Pom
Constitutive
Equation.




                           38
Pom-Pom Simulation
 from Software by Rudy Valette

-8 mode
Pom-Pom
model.
-Acknowledge
R. Valette
(CEMEF)



                        39
Tim Lord, David Hassell and Dietmar Auhl 2008




EPSRC Microscale Polymer Processing project
                                              40
Newtonian       Mildly
               viscoelastic




                Viscoelastic
Viscoelastic
                 solution
   melt




                       41
Stagnation Point flows as rheometers
                                         Dr Dietmar Auhl et al,
                                         Leeds University 2008


                                    6
elongational viscosityµ(t), Pas    10
                                                                              0.3
                                                  . -1               1              0.1        0.03   0.01
                                                  ε0 [s ]
   shear viscosity η(t), Pas


                                                              3                                         0.003

                                                     10                                                 0.001
                                    5
                                   10                                                                        .       -1
                                                                                                             γ0 [s ]

                                                                                                            0.001
                                                                                                            0.01
                                                                                                             0.1

                                    4                                                                        0.5
                                   10                                                                         1
                                                                                                                 2
                                                                                                                 5
                                                    LDPE
                                                  T = 150°C                                                  10
                                    3
                                   10
                                             -1                  0            1            2            3
                                        10                  10           10           10              10
                                                                         time t, s

                                                                                                                 42
η E ,st (ε) = (σ xx − σ yy ) st / εst      steady-state elongational viscosity
                                             at the stagnation point


                                                                                            0




   ε
      =




                                                                                       principle
                    ε
                    

                                                                                            0




                                          ∆ n = SOC (σX xx − σ yy ) + 4σ xy
       •                                                               2           2
       ε st = A x V piston                    -4    -2     0     2      4



                                                           43
Dr Dietmar Auhl et al , Leeds University




                                    44
So;
Is the Frank, Keller, de Gennes era
               over ?




                           45
Yes.
             but,
  I hope others will follow
their inspirational example.



                         46

More Related Content

Viewers also liked

Viewers also liked (15)

Shear thinning of complex fluids-2005
Shear thinning of complex fluids-2005Shear thinning of complex fluids-2005
Shear thinning of complex fluids-2005
 
Rheology last lecture 2015
Rheology last lecture 2015Rheology last lecture 2015
Rheology last lecture 2015
 
MCF Korea-2012
MCF Korea-2012MCF Korea-2012
MCF Korea-2012
 
MPR portugal 2007
MPR portugal 2007MPR portugal 2007
MPR portugal 2007
 
Plastic is fantastic mrm-2016
Plastic is fantastic mrm-2016Plastic is fantastic mrm-2016
Plastic is fantastic mrm-2016
 
Web- Liquid Crytals and Liquid Crystal Polymers-2015
Web- Liquid Crytals and Liquid Crystal Polymers-2015Web- Liquid Crytals and Liquid Crystal Polymers-2015
Web- Liquid Crytals and Liquid Crystal Polymers-2015
 
Web crystallisation-2015.3
Web crystallisation-2015.3Web crystallisation-2015.3
Web crystallisation-2015.3
 
Flow, Crystallisation and Continuous Processing
Flow, Crystallisation and Continuous ProcessingFlow, Crystallisation and Continuous Processing
Flow, Crystallisation and Continuous Processing
 
Introduction to rheology
Introduction to rheologyIntroduction to rheology
Introduction to rheology
 
The Fundamentals of Rheology
The Fundamentals of RheologyThe Fundamentals of Rheology
The Fundamentals of Rheology
 
Rheology methods
Rheology methodsRheology methods
Rheology methods
 
Rheology
RheologyRheology
Rheology
 
Rheology
RheologyRheology
Rheology
 
Rheology pdf
Rheology pdfRheology pdf
Rheology pdf
 
Rheology
RheologyRheology
Rheology
 

More from malcolmmackley

Nantes brilliant sci-2011 (v2)
Nantes brilliant sci-2011 (v2)Nantes brilliant sci-2011 (v2)
Nantes brilliant sci-2011 (v2)malcolmmackley
 
Web crystallisation-2015.2
Web crystallisation-2015.2Web crystallisation-2015.2
Web crystallisation-2015.2malcolmmackley
 
The Cambridge Trimaster 2013
The Cambridge Trimaster 2013The Cambridge Trimaster 2013
The Cambridge Trimaster 2013malcolmmackley
 
Ink jet rheology and processing-Monash 2009
Ink jet rheology and processing-Monash 2009Ink jet rheology and processing-Monash 2009
Ink jet rheology and processing-Monash 2009malcolmmackley
 
Process Intensification Korea-2012
Process Intensification Korea-2012Process Intensification Korea-2012
Process Intensification Korea-2012malcolmmackley
 
Inventing Apparatus and Processes 2011
Inventing Apparatus and Processes 2011Inventing Apparatus and Processes 2011
Inventing Apparatus and Processes 2011malcolmmackley
 
Chocolate lecture abingdon school-2010
Chocolate lecture abingdon school-2010Chocolate lecture abingdon school-2010
Chocolate lecture abingdon school-2010malcolmmackley
 
mrm Bristol-Flow Visualisation-(2008)
mrm Bristol-Flow Visualisation-(2008)mrm Bristol-Flow Visualisation-(2008)
mrm Bristol-Flow Visualisation-(2008)malcolmmackley
 

More from malcolmmackley (10)

Nantes brilliant sci-2011 (v2)
Nantes brilliant sci-2011 (v2)Nantes brilliant sci-2011 (v2)
Nantes brilliant sci-2011 (v2)
 
Web crystallisation-2015.2
Web crystallisation-2015.2Web crystallisation-2015.2
Web crystallisation-2015.2
 
Trimaster v2-bsr-2013
Trimaster v2-bsr-2013Trimaster v2-bsr-2013
Trimaster v2-bsr-2013
 
The Cambridge Trimaster 2013
The Cambridge Trimaster 2013The Cambridge Trimaster 2013
The Cambridge Trimaster 2013
 
Ink jet rheology and processing-Monash 2009
Ink jet rheology and processing-Monash 2009Ink jet rheology and processing-Monash 2009
Ink jet rheology and processing-Monash 2009
 
Process Intensification Korea-2012
Process Intensification Korea-2012Process Intensification Korea-2012
Process Intensification Korea-2012
 
Inventing Apparatus and Processes 2011
Inventing Apparatus and Processes 2011Inventing Apparatus and Processes 2011
Inventing Apparatus and Processes 2011
 
CNT Nantes- 2011
CNT Nantes- 2011CNT Nantes- 2011
CNT Nantes- 2011
 
Chocolate lecture abingdon school-2010
Chocolate lecture abingdon school-2010Chocolate lecture abingdon school-2010
Chocolate lecture abingdon school-2010
 
mrm Bristol-Flow Visualisation-(2008)
mrm Bristol-Flow Visualisation-(2008)mrm Bristol-Flow Visualisation-(2008)
mrm Bristol-Flow Visualisation-(2008)
 

mrm Chamonix-stretching chains-(2009)

  • 1. Chamonix France Feb 2009 Pierre de Gennes Research Meeting Stretching Polymer Chains by Malcolm Mackley With acknowledgement to The Late Sir Charles Frank, Sir Michael Berry, The late Andrew Keller. Dr Kris Coventry, Dr Tim Lord, Lino Selsci Department of Chemical Engineering and Biotechnology University of Cambridge 1
  • 2. Time line • Pre 1970 Background “a bit of History” Tom Mcleish •1970s Stagnation point flows A slight digression “ Catastrophe” “Our financial friends” Armand Ajdari •1980s Real chain stretch “ we don’t understand entanglements” Ralph Colby • 2005 Stagnation point flows; the Cross Slot 2 “use the inventions of others” Armand Ajdari
  • 3. The stretching of liquid droplets G.I.Taylor 1934 Four roll mill Parallel Band Ca ≥ 1 Summarised by “The Grace diagram” Simple shear Capillary number η γD Ca = c 1 pure shear ν 1 Viscosity ratio of drop to matrix Capillary number criteria for drop deformation Ca ≥ 1 3
  • 4. The stretching of Polymer; Chains Peterlin and Ziabicki 1960s Kinetic Theory Polymer of Chain extension Kuhn and Kuhn 1940s β = γτ  γ = strain rate, τ = chain relaxation time of polymer chain  Β number criteria for polymer chain extension β = γ τ ≥ 1 4
  • 5. Pioneers in Science 1970s Charles Frank Andrew Keller Pierre de Gennes Science Science Science Geometry Crystallisation Scaling 5
  • 7. Polyethylene Diamond 7
  • 8. 1969 Sir Charles Frank Opposed jets B number criteria for chain extension β = γ τ ≥ 1 8
  • 9. Chain extension with opposed jets B number criteria for chain extension β = γ τ ≥ 1 9
  • 10. Localized Flow Birefringence of Polyethylene Oxide Solutions in a Four Roll Mill 1974 Crowley et al. Journal of Polymer Science: Vol 14 1111-1119 (1976) 10
  • 11. B number criteria for chain extension β = γ τ ≥ 1 Strain criteria for chain extension γ t ≥ γ 0 11
  • 12. The Two Roll Mill 1974 Confirms localisation in extensional flows 12
  • 13. A short digression. Christopher Zeeman; University of Warwick 1970s 13
  • 14. Rene Thom; Catastrophe Theory! (Something our financiers and politicians should have studied !) 14
  • 15. Catastrophe Theory The teaching of Christopher Zeeman! “dogs (or birds) ” meeting Friendly Control Parameter; 1 / distance apart Aggressive 15
  • 16. Catastrophe Theory The economy Greed Control Parameter; Time Contentment Margaret Thatcher Tony Blair Gordan Brown 16
  • 17. Catastrophe Theory; The Six Roll Mill 1976 M.V.Berry and M.R. Mackley. Phil. Trans. Roy. Soc. Lond. 287, 1337, 1-16 (1977). 17
  • 18. 18
  • 19. Stream function for Six Roll Mill flow pattern 1 3 2 1 φ (x, y) = γ ( x - x y ) - ω ( x 2 + y 2 ) - Vy x + Vx y 3 2 dφ dφ Vx = , Vy = - dy dx 19
  • 20. The elliptic umbilic Berry and Mackley 20 Bristol 1976
  • 21. Berry and Mackley 1976 21
  • 22. The elliptic umbilic Berry and Mackley 22 Bristol 1976
  • 23. 1980s Back to stretching chains! Shish Kebab Core; Extended chain Expect E=100 GPa Not usual E=1 GPa 23
  • 24. Paul Smith. Piet Lemstra Now ETH Now TU Eindhoven 24
  • 25. UHMWPE gel processing Piston 1. Low entanglement UHMWPE polymer gel Solvent recovery 2. Unoriented Gel fibre 4. Hot draw Quench bath 5. Oriented High Modulus Polyethylene 3. Unoriented Low entanglement semi crystalline fibre Schematic diagram of High Modulus Polyethylene (HMP) process P. Smith, and P.J.Lemstra, J. Material. Sci. 1980, 15, 505 25
  • 26. Continuous processing of UHMWPE Dyneema Solvent r UHM WPE Polymer powde Low entanglement polymer gel Screw extrude r Spinneret Solvent recovery Gel fibres Hot draw Quench bath Low entanglement semi crystalline fibre Schematic diagram of continuous High M odulus Polyethylene (HM P) process 26
  • 28. 2005 Back to stagnation point flows The Cross-Slot • Generate a hyperbolic pure shear flow pattern as shown. • Near the walls the flow deviates from ideal. • Along the symmetry axes rotation free pure extensional flow. 28
  • 29. The MultiPass Rheometer, (MPR) 1995 MPR for Cross-Slot Flow 2005 • The MPR action modified for cross-slot flow • Pistons force polymer melt through a cross-slot geometry Kris Coventry and Collaborative project with Leeds University; Tom Mcleish et al 29
  • 30. Apparatus Servo-hydraulically • Molten polymer is driven piston driven through test section by two servo- hydraulic pistons. 0.75 mm 1.5 mm radius • Air pressure is used to Slave piston driven by air Slave piston return polymer so that pressure driven by air pressure multiple experiments 1.5 mm can be carried out. Servo-hydraulically driven piston 30
  • 31. Apparatus 31
  • 32. Centre Section 3 cm 32
  • 33. Cross Section of Apparatus Hot oil supply Camera lens Beam Focus Analyser Light Source and Polariser monochromatic P, T Transducers Nitrogen supply (for cross-slot flow only) 33
  • 34. Typical Result -Dow PS680E -Piston velocity of 0.5 mm/s (maximum extension rate =4.3/s). -Inlet slit width=1.5mm -Section depth=10mm - T=180°C. 34
  • 35. Newtonian Simulation Polyflow Newtonian Constitutive Equation: Viscosity = 7000 Pa.s 35
  • 36. Power Law Simulation Polyflow Power Law Constitutive Equation: Effective Viscosity = 7000*(0.3*γ) ^ 0.75 Pa.s 36
  • 37. Integral Wagner Simulation Polyflow - Integral Wagner Constitutive Equation - 8 mode relaxation spectrum. - Single damping coefficient 37
  • 38. Reptation based Pom-Pom Simulation Flowsolve (Leeds) 8 mode Pom-Pom Constitutive Equation. 38
  • 39. Pom-Pom Simulation from Software by Rudy Valette -8 mode Pom-Pom model. -Acknowledge R. Valette (CEMEF) 39
  • 40. Tim Lord, David Hassell and Dietmar Auhl 2008 EPSRC Microscale Polymer Processing project 40
  • 41. Newtonian Mildly viscoelastic Viscoelastic Viscoelastic solution melt 41
  • 42. Stagnation Point flows as rheometers Dr Dietmar Auhl et al, Leeds University 2008 6 elongational viscosityµ(t), Pas 10 0.3 . -1 1 0.1 0.03 0.01 ε0 [s ] shear viscosity η(t), Pas 3 0.003 10 0.001 5 10 . -1 γ0 [s ] 0.001 0.01 0.1 4 0.5 10 1 2 5 LDPE T = 150°C 10 3 10 -1 0 1 2 3 10 10 10 10 10 time t, s 42
  • 43. η E ,st (ε) = (σ xx − σ yy ) st / εst steady-state elongational viscosity at the stagnation point 0 ε  = principle ε  0 ∆ n = SOC (σX xx − σ yy ) + 4σ xy • 2 2 ε st = A x V piston -4 -2 0 2 4 43
  • 44. Dr Dietmar Auhl et al , Leeds University 44
  • 45. So; Is the Frank, Keller, de Gennes era over ? 45
  • 46. Yes. but, I hope others will follow their inspirational example. 46