“The Cambridge Multipass Rheometer”                    By              Malcolm Mackley        Department of Chemical Engin...
The Cambridge MultiPass Rheometer              (MPR)Pressure variation mode   Rheology flow mode                          ...
Key issues for Processing in generalTemperature          Pressure           Flow         Time              Key features of...
Cambridge MPRs                 MPR3    MPR2                  MPR4
J Rheology 1995
J Rheology 1995
Ice cream                    a complex composite material:Ice cream is a 3 phase material:              diameter range    ...
Ice cream matrix with foam inclusion                       100000                            10000                        ...
Ice cream matrix and foam inclusionVisualisation; Linkam CSS (Cambridge Shear System)
Optical Flow birefringenceRudy Valette   CEMEF SophiaAntipolis               FranceDr David Hassell
Multi-Pass Rheometer (MPR)                         top piston                         heating jacket                      ...
Case Study 1. Rudy Valette CMEF            Pressure difference vs time                           Flow curve               ...
LLDPE Experiment and matching simulation
Pressure drop vs Time                                                                     MPR4                       12   ...
Rheo-X-RAY                  Piston              X-Ray 2D detector                  Sample         Beryllium capillary     ...
The Cambridge Multipass  Rheometer (MPR)Pressure variation mode   Rheology flow mode   Cross-slot flow mode
Foaming   Tri Tuladhar, Nitin NowjieTop piston   Pressure             Thermocouple transducer  Thermal               Capil...
Growth profiles for different bubbles                                                                                     ...
Model matching with experimental data                             400                                                     ...
Starch melt rheology in the MPR                          1.0E+05                                                      Appa...
Viscoelastic behaviour of starch melt                     1.0E+05                                                         ...
Cross Slot, Kris Coventry• The MPR action was  modified for cross-slot flow• Pistons move out of phase  and force polymer ...
Flow Pattern               Cross-Slot flow• The aim is to generate  a hyperbolic flow  pattern as shown.• Near the walls t...
Apparatus• Molten polymer is                       Servo-hydraullically  driven through a                        driven pi...
Apparatus
Centre Section                 3 cm
Typical Result-Dow PS680E-Piston velocity of 0.5mm/s (maximumextension rate =4.3/s).-Inlet slitwidth=1.5mm-Section depth=1...
Pom-Pom Simulation                   Flowsolve8 modePom-PomConstitutiveEquation.
Filament stretch
DEP        + 1 wt% PS   +2.5 wt% PS   + 5.0 wt%           1.2 mmt-ts =   -20 ms         -17 ms     -17 ms        -11 mst-t...
5000                                  4500                                                                              St...
1.2 mm
MPR portugal 2007
MPR portugal 2007
Upcoming SlideShare
Loading in …5
×

MPR portugal 2007

700
-1

Published on

This 2007 presentation gives an overview on some aspects of the Cambridge Multipass Rheometer (MPR)

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
700
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
6
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • Exptl: No of bubbles = 150 Test surface area: 12 mm X 12 mm Therefore cell density: 150 bubbles/cm2 ~ 20,000 cells/cm3 From model: Sfinal ~ Rfinal Sfinal from expt: 0.5 mm Model SO = 0.15 mm; which is less than Sfinal_expt.. Void fraction: ~90%.
  • MPR portugal 2007

    1. 1. “The Cambridge Multipass Rheometer” By Malcolm Mackley Department of Chemical Engineering University of Cambridge
    2. 2. The Cambridge MultiPass Rheometer (MPR)Pressure variation mode Rheology flow mode Cross-slot flow mode
    3. 3. Key issues for Processing in generalTemperature Pressure Flow Time Key features of MPRTemperature -10 to 210 CentigradePressure 1 to 200 barFlow 1 to 100000 reciprocal secondsTime ms to hoursEnclosed small volume
    4. 4. Cambridge MPRs MPR3 MPR2 MPR4
    5. 5. J Rheology 1995
    6. 6. J Rheology 1995
    7. 7. Ice cream a complex composite material:Ice cream is a 3 phase material: diameter range -5°c –ice crystals 25µm to 40 µm 15% –air bubbles 20µm to 60 µm 50% –matrix 35% Conventional ice cream microstructure: Air cells Ice Crystals Matrix 100µm x300
    8. 8. Ice cream matrix with foam inclusion 100000 10000 φ = 0.6Apparent viscosity (Pa.s)   φ = 0.5 1000  φ = 0.4 φ = 0.0 100 10 1 Parallel Plates MPR-3 0 0.01 0.1 1 10 100 1000 10000 100000 Shear stress (Pa)
    9. 9. Ice cream matrix and foam inclusionVisualisation; Linkam CSS (Cambridge Shear System)
    10. 10. Optical Flow birefringenceRudy Valette CEMEF SophiaAntipolis FranceDr David Hassell
    11. 11. Multi-Pass Rheometer (MPR) top piston heating jacket pressure transducer slit die or capillary inserts bottom piston
    12. 12. Case Study 1. Rudy Valette CMEF Pressure difference vs time Flow curve 10000 differential pressure 1000 time Predicted η * (Pa.s) RDS MPR2, L/D=2.5 MPR2, L/D=5 MPR2, L/D=20 MPR4, L/D=2.5 MPR4, L/D=4 MPR4, L/D=5 100 0.01 0.1 1 -1 10 100 1000 10000 shear rate (s )FLOW
    13. 13. LLDPE Experiment and matching simulation
    14. 14. Pressure drop vs Time MPR4 12 10 8Pressure drop (Bars) Experiment 6 Compressible Rolie Poly Compressible Carreau Incompressible Rolie Poly 4 2 0 0 0,5 1 1,5 2 2,5 3 3,5 4 Time (s) LLDPE differential pressure responses
    15. 15. Rheo-X-RAY Piston X-Ray 2D detector Sample Beryllium capillary Beam stop DetectorX-Ray positioning railsource
    16. 16. The Cambridge Multipass Rheometer (MPR)Pressure variation mode Rheology flow mode Cross-slot flow mode
    17. 17. Foaming Tri Tuladhar, Nitin NowjieTop piston Pressure Thermocouple transducer Thermal Capillary/ Optical window insulationBleed valve Heating circuit Bottom piston 5
    18. 18. Growth profiles for different bubbles 5 Initial Final 4 41.94 – 149.89 – 6.83 PT – TT – XT 4.07 – 149.89 – 0.12 2 41.47 – 149.99 – 8.25 PB – TB – XB 4.44 – 150.01 – 1.38 450 1 400 3Bottom barrel pressure (0.1 x bar) 350 Equivalent bubble radius (µ m) 300 250 200 Bubble 1 Bubble 2 150 Bubble 3 Bubble 4 Piston speed = 0.5 mm/s 100 Bubble 5 50 P-bot 0 0 500 1000 1500 2000 2500 Time (s) 12
    19. 19. Model matching with experimental data 400 Best fit conditions: 350 T = 150°C, Pf = 4.0 bar, Ro = 0.1 µm, co = 30wt%, η o= 1×105 Pa s, 300 Dw = 6×10-16 m2/s, ρ = 1500 kg/m3, σ = 0.05 N/m, KH = 1×10-8 Pa-1 Bubble radius ( µ m) 250 B u b b le 1 B u b b le 2 200 B u b b le 3 B u b b le 4 B u b b le 5 150 M o d e l - S o = 6 0 m ic ro n s , D w = 1E - 11 m 2 / s M o d e l - S o = 6 0 m ic ro n s , D w = 6 E - 16 m 2 / s 100 M o d e l - S o = 5 0 m ic ro n s , D w = 6 E - 16 m 2 / s 50 0 0.001 0.01 0.1 1 10 100 1000 10000 Time (s) 15
    20. 20. Starch melt rheology in the MPR 1.0E+05 Apparent viscosity (η app) of starch melt at 70 bar pressure Viscosity (Pa s) 1.0E+04 1.0E+03 1.0E+02 1.0E-01 1.0E+00 1.0E+01 shear rate (s-1) Capillary: 12mm diameter, 56mm length 30% moisture content potato starch T = 140oC 19
    21. 21. Viscoelastic behaviour of starch melt 1.0E+05 Initial pressure maintained at 70 bar 1.0E+04 G, G, η * 1.0E+03 Storage modulus, G’ Loss modulus, G’’ Complex viscosity, η* 1.0E+02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 Frequency (Hz) Capillary: 12mm diameter, 56mm length 25% moisture content potato starch T = 141.9oC 20
    22. 22. Cross Slot, Kris Coventry• The MPR action was modified for cross-slot flow• Pistons move out of phase and force polymer through a cross-slot geometry• New inserts were fabricated for cross-slot flow
    23. 23. Flow Pattern Cross-Slot flow• The aim is to generate a hyperbolic flow pattern as shown.• Near the walls the flow deviates from ideal.• Along the symmetry axes we have rotation free pure extensional flow.
    24. 24. Apparatus• Molten polymer is Servo-hydraullically driven through a driven piston central section by two servo- hydraulically driven pistons. Slave piston 1.5 mm 0.75 mm radius Slave piston• Air pressure is driven by air pressure driven by air pressure used to return it so 1.5 mm that multiple experiments can be carried out on the same Servo-hydraullically driven piston apparatus
    25. 25. Apparatus
    26. 26. Centre Section 3 cm
    27. 27. Typical Result-Dow PS680E-Piston velocity of 0.5mm/s (maximumextension rate =4.3/s).-Inlet slitwidth=1.5mm-Section depth=10mm- T=180°C.
    28. 28. Pom-Pom Simulation Flowsolve8 modePom-PomConstitutiveEquation.
    29. 29. Filament stretch
    30. 30. DEP + 1 wt% PS +2.5 wt% PS + 5.0 wt% 1.2 mmt-ts = -20 ms -17 ms -17 ms -11 mst-ts = -1 ms 0 ms 0 ms 5 mst-ts = 1 ms 1 ms 2 ms 6 ms
    31. 31. 5000 4500 Stretch velocity (mm/s) 4000 10 30 50 80 Mid filament diameter (µm) 100 130 150 180 3500 200 250 300 3000 2500 2000 Piston stop time, tstop = 150 ms 1500 1000 tstop = 50 ms 500 0 tstop = 30 ms 0 20 40 60 80 100 120 140 Time (ms)Piston diameter = 5 mmFilament initially stretched to 1.5 mm on each side
    32. 32. 1.2 mm
    1. A particular slide catching your eye?

      Clipping is a handy way to collect important slides you want to go back to later.

    ×