Your SlideShare is downloading. ×
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Epidemiologisk FredagsmøDe 15 2 2008
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Epidemiologisk FredagsmøDe 15 2 2008

185

Published on

Published in: Health & Medicine
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
185
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Association Mapping Through local genealogies Thomas Mailund Bioinformatics Research Center http://www.birc.au.dk/
  • 2. Gunshot wounds Car accidents Smoking induced lung cancer “Genetic” Diseases Cardiovascular disease Obesity Diabetes 2 Alzheimer Schizophrenia BRCA1 breast cancer Cystic fibrosis Haemophilia
  • 3. Disease Mapping... Locate disease-affecting polymorphism Cases (affected) --A--------C--------A----G---X----T---C---A---- --T--------G--------A----G---X----C---C---A---- --A--------G--------G----G---X----C---C---A---- --A--------C--------A----G---X----T---C---A---- --T--------C--------A----G---X----T---C---A---- --T--------C--------A----T---X----T---A---A---- --A--------C--------A----G---X----T---C---A---- --A--------C--------A----G---X----T---C---A---- --A--------C--------A----G---X----T---C---G---- --T--------C--------A----T---X----T---C---A---- --A--------C--------A----G---X----T---C---A---- --A--------C--------G----T---X----C---A---A---- --A--------C--------A----G---X----C---C---G---- Controls (unaffected)
  • 4. Unrealistic Assumptions We only measure -A-- -C- -A-- “unphased” data --T-- --G- -G-- -C- -A-- -A-- --A-- --C- -G-- -T- -C-
  • 5. Unrealistic Assumptions We only measure -A-- -C- -A-- “unphased” data --T-- --G- -G-- -C- -A-- -A-- --A-- --C- -G-- -T- -C- We first need to infer the phase --T--------G--------A----G--------C---C---A---- --A--------C--------A----G--------T---C---A----
  • 6. Unrealistic Assumptions We only measure -A-- -C- -A-- “unphased” data --T-- --G- -G-- -C- -A-- -A-- --A-- --C- -G-- -T- -C- We first need to infer the phase --T--------G--------A----G--------C---C---A---- --A--------C--------A----G--------T---C---A---- --T--------G--------A----G--------T---C---A---- --A--------C--------A----G--------C---C---A----
  • 7. Unrealistic Assumptions We only measure -A-- -C- -A-- “unphased” data --T-- --G- -G-- -C- -A-- -A-- --A-- --C- -G-- -T- -C- We first need to infer the phase --T--------G--------A----G--------C---C---A---- --A--------C--------A----G--------T---C---A---- --T--------G--------A----G--------T---C---A---- --A--------C--------A----G--------C---C---A---- --T--------C--------A----G--------T---C---A---- --A--------G--------A----G--------C---C---A----
  • 8. Unrealistic Assumptions We only measure -A-- -C- -A-- “unphased” data --T-- --G- -G-- -C- -A-- -A-- --A-- --C- -G-- -T- -C- We first need to ? infer the phase --T--------G--------A----G--------C---C---A---- --A--------C--------A----G--------T---C---A---- --A--------G--------A----G--------C---C---A---- --T--------C--------A----G--------T---C---A---- --T--------C--------A----G--------T---C---A---- --A--------G--------A----G--------C---C---A----
  • 9. Disease Mapping... Markers are locally correlated Cases (affected) --A--------C--------A----G---X----T---C---A---- --T--------G--------A----G---X----C---C---A---- --A--------G--------G----G---X----C---C---A---- --A--------C--------A----G---X----T---C---A---- --T--------C--------A----G---X----T---C---A---- --T--------C--------A----T---X----T---A---A---- --A--------C--------A----G---X----T---C---A---- --A--------C--------A----G---X----T---C---A---- --A--------C--------A----G---X----T---C---G---- --T--------C--------A----T---X----T---C---A---- --A--------C--------A----G---X----T---C---A---- --A--------C--------G----T---X----C---A---A---- --A--------C--------A----G---X----C---C---G---- Controls (unaffected)
  • 10. Disease Mapping... Search for indirect signals Cases (affected) --A--------C--------A----G---X----T---C---A---- --T--------G--------A----G---X----C---C---A---- --A--------G--------G----G---X----C---C---A---- --A--------C--------A----G---X----T---C---A---- --T--------C--------A----G---X----T---C---A---- --T--------C--------A----T---X----T---A---A---- --A--------C--------A----G---X----T---C---A---- --A--------C--------A----G---X----T---C---A---- --A--------C--------A----G---X----T---C---G---- --T--------C--------A----T---X----T---C---A---- --A--------C--------A----G---X----T---C---A---- --A--------C--------G----T---X----C---A---A---- --A--------C--------A----G---X----C---C---G---- Controls (unaffected)
  • 11. Marker Relatedness Linkage disequilibrium (LD) Empirical Results Theoretical Results LD (r2) Recombination rate Clark et al. 2003, AJHG 73:285-300. Hein et al. 2005
  • 12. Indirect Association “Tag” markers Unobserved marker Cases (affected) --A--------C--------A----G---X----T---C---A---- --T--------G--------A----G---X----C---C---A---- --A--------G--------G----G---X----C---C---A---- --A--------C--------A----G---X----T---C---A---- --T--------C--------A----G---X----T---C---A---- --T--------C--------A----T---X----T---A---A---- --A--------C--------A----G---X----T---C---A---- --A--------C--------A----G---X----T---C---A---- --A--------C--------A----G---X----T---C---G---- --T--------C--------A----T---X----T---C---A---- --A--------C--------A----G---X----T---C---A---- --A--------C--------G----T---X----C---A---A---- --A--------C--------A----G---X----C---C---G---- Controls (unaffected)
  • 13. Indirect Association Cases (affected) --A--------C--------A----G---X----T---C---A---- --T--------G--------A----G---X----C---C---A---- --A--------G--------G----G---X----C---C---A---- --A--------C--------A----G---X----T---C---A---- --T--------C--------A----G---X----T---C---A---- --T--------C--------A----T---X----T---A---A---- --A--------C--------A----G---X----T---C---A---- --A--------C--------A----G---X----T---C---A---- --A--------C--------A----G---X----T---C---G---- --T--------C--------A----T---X----T---C---A---- --A--------C--------A----G---X----T---C---A---- --A--------C--------G----T---X----C---A---A---- --A--------C--------A----G---X----C---C---G---- Controls (unaffected)
  • 14. Indirect Association Cases (affected) --A--------C--------A----G---X----T---C---A---- --T--------G--------A----G---X----C---C---A---- --A--------G--------G----G---X----C---C---A---- --A--------C--------A----G---X----T---C---A---- --T--------C--------A----G---X----T---C---A---- --T--------C--------A----T---X----T---A---A---- --A--------C--------A----G---X----T---C---A---- --A--------C--------A----G---X----T---C---A---- --A--------C--------A----G---X----T---C---G---- --T--------C--------A----T---X----T---C---A---- --A--------C--------A----G---X----T---C---A---- --A--------C--------G----T---X----C---A---A---- --A--------C--------A----G---X----C---C---G---- Controls (unaffected)
  • 15. Indirect Association Cases (affected) --A--------C--------A----G---X----T---C---A---- --T--------G--------A----G---X----C---C---A---- --A--------G--------G----G---X----C---C---A---- --A--------C--------A----G---X----T---C---A---- --T--------C--------A----G---X----T---C---A---- --T--------C--------A----T---X----T---A---A---- --A--------C--------A----G---X----T---C---A---- --A--------C--------A----G---X----T---C---A---- --A--------C--------A----G---X----T---C---G---- --T--------C--------A----T---X----T---C---A---- --A--------C--------A----G---X----T---C---A---- --A--------C--------G----T---X----C---A---A---- --A--------C--------A----G---X----C---C---G---- Controls (unaffected)
  • 16. Indirect Association Cases (affected) --A--------C--------A----G---X----T---C---A---- --T--------G--------A----G---X----C---C---A---- --A--------G--------G----G---X----C---C---A---- --A--------C--------A----G---X----T---C---A---- --T--------C--------A----G---X----T---C---A---- --T--------C--------A----T---X----T---A---A---- --A--------C--------A----G---X----T---C---A---- --A--------C--------A----G---X----T---C---A---- --A--------C--------A----G---X----T---C---G---- --T--------C--------A----T---X----T---C---A---- --A--------C--------A----G---X----T---C---A---- --A--------C--------G----T---X----C---A---A---- --A--------C--------A----G---X----C---C---G---- Controls (unaffected)
  • 17. Indirect Multi-Marker Association Cases (affected) --A--------C--------A----G---X----T---C---A---- --T--------G--------A----G---X----C---C---A---- --A--------G--------G----G---X----C---C---A---- --A--------C--------A----G---X----T---C---A---- --T--------C--------A----G---X----T---C---A---- --T--------C--------A----T---X----T---A---A---- --A--------C--------A----G---X----T---C---A---- --A--------C--------A----G---X----T---C---A---- --A--------C--------A----G---X----T---C---G---- --T--------C--------A----T---X----T---C---A---- --A--------C--------A----G---X----T---C---A---- --A--------C--------G----T---X----C---A---A---- --A--------C--------A----G---X----C---C---G---- Controls (unaffected)
  • 18. The Ancestral Recombination Graph Hudson 1990, Griffith and Marjoram 1996
  • 19. The Coalescent Process
  • 20. The Coalescent Process
  • 21. The Coalescent Process
  • 22. The Coalescent Process
  • 23. The Coalescent Process
  • 24. The Coalescent Process
  • 25. The Coalescent Process
  • 26. The Coalescent Process
  • 27. The Coalescent Process
  • 28. The Coalescent Process
  • 29. The Coalescent Process
  • 30. The Coalescent Process
  • 31. The Coalescent Process
  • 32. The Coalescent Process
  • 33. The Coalescent Process
  • 34. The Coalescent Process
  • 35. The Coalescent Process
  • 36. The Coalescent Process
  • 37. The Coalescent Process
  • 38. The Coalescent Process
  • 39. The Coalescent Process
  • 40. The Coalescent Process
  • 41. The Coalescent Process
  • 42. The Coalescent Process
  • 43. The Coalescent Process
  • 44. The Coalescent Process
  • 45. The Coalescent Process
  • 46. The Coalescent Process
  • 47. The Coalescent Process
  • 48. The Coalescent Process
  • 49. The Coalescent Process
  • 50. The Coalescent Process
  • 51. The Coalescent Process
  • 52. The Coalescent Process
  • 53. A Reasonable Local Model Copyright Ó 2007 by the Genetics Society of America DOI: 10.1534/genetics.107.071126 On Recombination-Induced Multiple and Simultaneous Coalescent Events Joanna L. Davies,1 Frantisek Simanc´k, Rune Lyngsø, Thomas Mailund and Jotun Hein ˇ ˇı Department of Statistics, University of Oxford, Oxford, OX1 3TG, United Kingdom Manuscript received January 18, 2007 Accepted for publication October 2, 2007 ABSTRACT Coalescent theory deals with the dynamics of how sampled genetic material has spread through a population from a single ancestor over many generations and is ubiquitous in contemporary molecular population genetics. Inherent in most applications is a continuous-time approximation that is derived under the assumption that sample size is small relative to the actual population size. In effect, this precludes multiple and simultaneous coalescent events that take place in the history of large samples. If sequences do not recombine, the number of sequences ancestral to a large sample is reduced sufficiently after relatively few generations such that use of the continuous-time approximation is justified. However, in tracing the history of large chromosomal segments, a large recombination rate per generation will consistently maintain a large number of ancestors. This can create a major disparity between discrete-time and continuous-time models and we analyze its importance, illustrated with model parameters typical of the human genome. The presence of gene conversion exacerbates the disparity and could seriously undermine applications of coalescent theory to complete genomes. However, we show that multiple and simultaneous coalescent events influence global quantities, such as total number of ancestors, but have negligible effect on local quantities, such as linkage disequilibrium. Reassuringly, most applications of the coalescent model with recombination (including association mapping) focus on local quantities. K INGMAN (1982) models the ancestry of a sample of sequences with a continuous-time Markov pro- cess referred to as the Kingman coalescent. Lineages ulation size, the probability of such events occurring becomes nonnegligible and consequently in these instances the rate of coalescence is underestimated collide or coalesce after random exponential waiting by Hudson’s continuous-time model. Hudson’s model
  • 54. A Reasonable Local Model • The “back in time” approach (in general) means we ignore selection • Implicit assumption that the disease is selectively neutral • Which may or may not be reasonable... • Might be okay for late onset diseases...
  • 55. The ARG as a Statistical Model P( )
  • 56. The ARG as a Statistical Model P( | )
  • 57. The ARG as a Statistical Model P( | )
  • 58. The ARG as a Statistical Model P( | )
  • 59. The ARG as a Statistical Model P( | , )P( |)
  • 60. The ARG as a Statistical Model lhd( )= P( | )= ∫P( | , )P( | )d
  • 61. The ARG as a Statistical Model lhd( )= ∫P( | , )P( | )d Integration by magic
  • 62. The ARG as a Statistical Model lhd( )= ∫P( | , )P( | )d Integration by magic statistical sampling
  • 63. ARG Methods • Sampling ARGs from the coalescence process • Sampling ARGs conditional on the data (importance sampling) • Sampling parsimonious ARGs conditional on the data
  • 64. ARG Methods • Sampling ARGs from the coalescence process • This is a no go -- you would never sample an ARG that can explain the data • Sampling ARGs conditional on the data (importance sampling) • Sampling parsimonious ARGs conditional on the data
  • 65. ARG Methods • Sampling ARGs from the coalescence process • Sampling ARGs conditional on the data (importance sampling) • Larribe, Lessard and Schork 2002 -- scales to tens of individuals and tens of markers • Sampling parsimonious ARGs conditional on the data
  • 66. ARG Methods • Sampling parsimonious ARGs conditional on the data • Lyngsø, Song & Hein 2005 (calculates parsimonious ARGs -- a 2008 paper in press for sampling) • Minichiello & Durbin 2006 (samples parsimonious ARGs and scores local genealogies) • Both preferentially selects mutations and coalescence events over recombinations • Scales to thousands of individuals and hundreds of markers
  • 67. Local Phylogenies For each “point” on the chromosome, the ARG determines a (local) tree:
  • 68. Local Phylogenies For each “point” on the chromosome, the ARG determines a (local) tree:
  • 69. Local Phylogenies For each “point” on the chromosome, the ARG determines a (local) tree:
  • 70. Local Phylogenies For each “point” on the chromosome, the ARG determines a (local) tree:
  • 71. Changing Phylogenies Type 1: No change Type 2: Change in branch lengths Type 3: Change in topology From Hein et al. 2005
  • 72. Trees and LD Tree similarity LD r2 Recombination rate Recombination rate
  • 73. Can we use just the trees?
  • 74. Clustering on a Tree Disease affecting mutation
  • 75. Clustering on a Tree Complete penetrance Incomplete penetrance Spurious disease
  • 76. Clustering on a Tree 25% Case/control clustering is not random on the tree... 75% 40% 60%
  • 77. Sampling Trees (with recombination) Zöllner & Pritchard 2005
  • 78. Sampling Trees (with recombination) Zöllner & Pritchard 2005
  • 79. Sampling Trees (with recombination) Zöllner & Pritchard 2005
  • 80. Sampling Trees (with recombination) Zöllner & Pritchard 2005
  • 81. Sampling Trees (with recombination) Zöllner & Pritchard 2005
  • 82. Sampling Trees (with recombination) Zöllner & Pritchard 2005
  • 83. Sampling Trees (with recombination) Zöllner & Pritchard 2005
  • 84. Sampling Trees (with recombination) Zöllner & Pritchard 2005
  • 85. Sampling Trees (with recombination) Zöllner & Pritchard 2005
  • 86. Sampling Trees (with recombination) Zöllner & Pritchard 2005
  • 87. Sampling Trees (with recombination) Zöllner & Pritchard 2005
  • 88. Sampling Trees (with recombination) Zöllner & Pritchard 2005
  • 89. Sampling Trees (with recombination) Zöllner & Pritchard 2005
  • 90. Sampling Trees (with recombination) Zöllner & Pritchard 2005
  • 91. Sampling Trees (with recombination) Zöllner & Pritchard 2005
  • 92. Sampling Trees (with recombination) Zöllner & Pritchard 2005
  • 93. Sampling Trees (with recombination) Zöllner & Pritchard 2005
  • 94. Sampling Trees (with recombination) We only sample the process on the left -- much fewer events Zöllner & Pritchard 2005
  • 95. Using “Perfect Phylogenies” Use the four-gamete test to find regions that can be explained by a tree with no recurrent mutations Mailund, Besenbacher & Schierup 2006
  • 96. Using “Perfect Phylogenies” Build trees for each such region Mailund, Besenbacher & Schierup 2006
  • 97. Using “Perfect Phylogenies” Each marker splits a sub-tree in two Mailund, Besenbacher & Schierup 2006
  • 98. Using “Perfect Phylogenies” Each marker splits a sub-tree in two Mailund, Besenbacher & Schierup 2006
  • 99. Using “Perfect Phylogenies” Each marker splits a sub-tree in two Mailund, Besenbacher & Schierup 2006
  • 100. Using “Perfect Phylogenies” Much faster (and much cruder) Catches the essential tree structure Mailund, Besenbacher & Schierup 2006
  • 101. Scoring the Clustering Red=cases Green=controls Are the case chromosomes significantly over-represented in some clusters?
  • 102. Wild-types Mutation Mutants We can place “mutations” on the tree edges and partition chromosomes into “mutants” and “wild-types” and test for different distributions of cases and controls
  • 103. Wild-types Mutation Mutants Use average or maximum to score the tree Average is kosher Bayesian stats; maximum needs to be corrected for over-fitting.
  • 104. Blossoc (BLOck aSSOCiation) Homepage: www.birc.au.dk/~mailund/Blossoc Command line and graphical user interface (with limited functionality)
  • 105. Blossoc (BLOck aSSOCiation) Homepage: www.birc.au.dk/~mailund/Blossoc Fast enough to analyse tens of thousands of individuals in hundred of thousands of markers in a day or two on a desktop computer...
  • 106. Localisation Accuracy A single causal mutation Max BF / min p-value used as point estimate
  • 107. Localisation Accuracy Two causal mutations Max BF / min p-value used as point estimate
  • 108. Thank you! More information at http://www.birc.au.dk/~mailund/association-mapping/

×