Capítulo tercero muestreo suelo
Upcoming SlideShare
Loading in...5
×
 

Capítulo tercero muestreo suelo

on

  • 2,651 views

 

Statistics

Views

Total Views
2,651
Views on SlideShare
2,651
Embed Views
0

Actions

Likes
2
Downloads
60
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft Word

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Capítulo tercero muestreo suelo Capítulo tercero muestreo suelo Document Transcript

  • Capítulo tercero 3. Muestreo y caracterización de un sitioPara el buen desarrollo de una investigación, así como para la obtención de resultados confiables a partir de undiseño experimental para la remediación de un suelo contaminado, es necesario, en primer lugar, llevar a cabosu caracterización. La caracterización de un sitio, implica actividades de muestreo y análisis que tienen comofinalidad determinar la extensión y naturaleza de la contaminación; asimismo, provee las bases para adquirir lainformación técnica necesaria para desarrollar, proyectar, analizar y seleccionar las técnicas de limpieza másapropiadas. La caracterización se realiza en etapas y, debido a que su principal objetivo es la toma dedecisiones basadas en información existente, el primer paso es definir los objetivos del estudio (sección 3.1). Lamayoría de las metodologías de caracterización incluye las siguientes etapas (US EPA 1991, Álvarez-Manilla etal. 2002):i Determinación de las condiciones del sitio antes de la contaminación. ii Definición de la magnitud y tipo decontaminación. iii Muestreo. iv Análisis físicos y químicos. v Elaboración de cartas y/o mapas con ayuda desistemas de información geográfica.Para cualquier investigación relativa a la remediación de un sitio es importante definir, tanto como sea posible,el perfil horizontal y vertical del contaminante. La información completa acerca del alcance y diversidad de lacontaminación en el sitio es crítica para la selección de una tecnología de tratamiento. La obtención de estainformación generalmente requiere de la toma de muestras y de la determinación de sus características físicasy químicas (Van Deuren et al. 2002). El muestreo es el primer paso a efectuar para realizar un análisis desuelos y es la actividad por medio de la cual se toman partes representativas de un todo llamado población, conel objeto de conocer la población total a partir del estudio de las características de cada una de esas partes(Valencia y Hernández 2002).3.1. Objetivos de un muestreoEl objetivo principal de cualquier operación de muestreo es colectar muestras representativas del medio que seestá investigando. Más específicamente, el propósito del muestreo en un sitio contaminado es adquiririnformación que ayude a determinar la presencia e identidad de los contaminantes presentes y el grado en elque estos podrían entrar en el ambiente circundante (Ford et al. 1984). El muestreo de un suelo se diseña yconduce para cumplir con uno o varios de los siguientes objetivos (Barth et al. 1989):. Determinar el riesgo a la salud humana y/o al ambiente debido a la contaminación del suelo porcontaminantes específicos.. Determinar la presencia y concentración de contaminantes específicos, con respecto a niveles de fondo(concentraciones naturales en el sitio).. Determinar la concentración de contaminantes y su distribución espacial y temporal.. Medir la eficiencia de acciones de control o de limpieza (remediación).
  • . Obtener mediciones para validación o uso de modelos de transporte y deposición de contaminantes en elsuelo.. Determinar el riesgo potencial a la fiora y fauna por contaminantes específicos.. Identificar fuentes de contaminación, mecanismos o rutas de transporte y receptores potenciales.3.2. Tipos de muestreoEl muestreo representativo juega un papel muy importante en la calidad y la utilidad de los datos analíticos. Elmuestreo representativo debe tener altos niveles de precisión y exactitud, que garanticen que una muestra ogrupo de muestras sea representativa y proporcione con precisión las características del sitio, además de quelos resultados sean reproducibles. La exactitud se refiere a la aproximación del valor del análisis de suelo conrespecto al contenido real en campo, y la precisión describe la posibilidad de reproducir de los resultados.Ambos parámetros están determinados por el número de muestras tomadas en el campo. A medida que seincrementa el número de muestras, aumenta la exactitud y la precisión (Mason 1992). El diseño de unmuestreo puede ser (i) a juicio (no probabilístico) o bien, (ii) aleatorio simple, estratificado o sistemático(probabilístico) (Valencia y Hernández 2002).3.2.1. Muestreo a juicio Un muestreo selectivo o a juicio se presenta cuando los elementos sonseleccionados mediante un criterio personal y generalmente lo realizaun experto. En zonas heterogéneas de pequeña extensión se pueden escoger puntos con base en diferenciastípicas, como cambios notorios en relieve, textura, color superficial, vegetación, etc. En los estudiosambientales, el muestreo selectivo, a menudo, constituye la base de una investigación exploratoria. Susprincipales ventajas son la facilidad de realización y sus bajos costos, además de que se puede llevar a cabo enzonas heterogéneas como en zonas homogéneas (Mason 1992).3.2.2. Muestreo aleatorio simpleEste tipo de muestreo (figura 5a) se emplea en casos en los que se dispone de poca información acerca de lascaracterísticas de la población a medir; se basa en la teoría de probabilidades y siempre re- quiere de unanálisis estadístico. Este tipo de muestreo permite todas las combinaciones posibles de unidades de muestras aseleccionar. Los puntos de muestreo se ubican en un plano cartesiano (Xi,Yj), en donde cada punto de lapoblación tiene la misma probabilidad de ser seleccionado. El medio más común para minimizar la desviaciónestándar en esta selección es asignarle un número a cada unidad de población y extraer unidades de muestrasde una tabla de números aleatorios (Mason 1992).Este tipo de muestreo es recomendable para áreas homogéneas menores a cinco hectáreas, delimitadas porreferencias visibles a lo largo y ancho de toda la zona (Valencia y Hernández 2002).3.2.3. Muestreo aleatorio estratificadoEn este tipo de muestreo (figura 5b), la población en estudio se sub- divide en estratos o subgrupos que tienencierta homogeneidad en el terreno y en cada estrato se realiza un muestreo aleatorio simple. El requisitoprincipal para aplicar este método de muestreo es el conocimiento previo de información que permita subdividirla población
  • Figura 5. Tipos de muestreo: a) aleatorio simple; b) aleatorio estratificado; c) sistemático rejilla rectangular; d) sistemático rejilla polarPor ejemplo, la división se puede realizar con base en la topografía, los horizontes del suelo, la mancha delcontaminante, los cambios de color en el suelo, el crecimiento irregular de las plantas, etc. Esto garantiza quelos puntos de muestreo se encuentren repartidos más uniformemente en toda la zona, en función al tamaño delestrato y permite además conocer de forma independiente las características particulares de cada estrato. Esrecomendable para áreas mayores de diez hectáreas y cuando el terreno no es homogéneo (Mason 1992,Valencia y Hernández 2002).3.2.4. Muestreo sistemáticoEl muestreo sistemático es una herramienta que puede utilizarse para reducir la variabilidad de la muestras.Este método consiste en ubicar las muestras en un patrón regular en toda la zona de estudio (figura 5); puederealizarse a partir de un punto determinado al azar, a partir del cual se establece cierta distancia para ubicar losdemás puntos (a distancias uniformes entre sí). Este tipo de muestreo puede realizarse por rejilla rectangular opolar (figura 5c y 5d) (Mason 1992). Puede llevarse a cabo en superficies de cualquier tamaño, dado que lasmuestras pueden ubicarse de acuerdo con las dimensiones y forma del terreno, es decir, la distanciaequidistante entre los puntos de muestreo pueden ser de unos centímetros, metros o hasta kilómetros, lo cualdepende del tipo de estudio que se esté realizando (Valencia y Hernández 2002).3.3. Muestras representativasUna muestra puede definirse como una parte representativa de un medio que se está investigando. Sinembargo, representatividad es un término relativo que debe considerarse con cuidado, junto con otros criterios,antes de la obtención de muestras. Entre los criterios más importantes se incluyen (Ford et al. 1984):. Representatividad. Una muestra posee las mismas características o propiedades que el material en estudio. Elgrado de semejanza entre las muestras y el material en estudio se determina por las características a estudiary por las técnicas analíticas usadas.
  • . Tamaño de muestra. Se debe seleccionar cuidadosamente, con base en las propiedades físicas de la matriz ylos requerimientos y/o limitaciones del muestreo y las técnicas de análisis.. Número y/o frecuencia del submuestreo. Estas consideraciones deben basarse en el tipo de informaciónestadística que se desea y en la naturaleza del material a colectar.. Mantenimiento de la integridad de las muestras. La muestra debe conservar las propiedades de lascondiciones originales en el sitio (al tiempo del muestreo), durante la colección, transporte y entrega alanalista.La importancia de obtener muestras representativas en campo, a través de las metodologías mencionadasanteriormente, así como conservar su integridad durante los procedimientos analíticos, es fundamental para lageneración de datos significativos. La inherente heterogeneidad de los suelos representa un reto particular parael personal responsable de un muestreo; es un factor que debe considerarse durante la planeación de unmuestreo, ya que incide en diversos aspectos: (i) en la manera en la que el analista debe tomar submuestrasen el laboratorio; (ii) en la interpretación de datos y (iii) en la decisión acerca de las acciones a seguir para laremediación de un sitio. Desafortunadamente, la completa homogeneidad de un material particulado, como elsuelo, no es posible debido a diversos factores. Sin embargo, el grado de heterogeneidad de un suelo y suefecto en el muestreo ambiental puede minimizarse. La industria minera desarrolló métodos que han servidocomo guías para el muestreo y sub-muestreo de un suelo contaminado. Las teorías de muestreo de Pierre Gy,1son herramientas útiles aplicables al muestreo de una matriz compleja contaminada. El uso de las prácticassugeridas por dicho autor dan como resultado muestras más representativas del sitio y datos de mayor calidad(US EPA 1999, Gerlach y Nocerino 2003).La incertidumbre asociada al muestreo es producto de la muestra (características físicas y químicas) y delproceso de muestreo (asociada a problemas estadísticos y a las técnicas de muestreo). La teoría de Gy incluyesiete tipos de error de muestreo y proporciona técnicas demostradas para su minimización (cuadro 8) (US EPA1999, Gy 1992).1. Las teorías de muestreo de Pierre Gy, aplicadas con gran eficiencia en la industria minera desde 1953 sebasan, en parte, en el trabajo de especialistas en muestreo, incluyendo a D. W. Brunton (1894 y 1895).Brunton demostró que existe una relación entre el tamaño de una partícula y el peso de una muestra, quepuede usarse como una estimación confiable de la concentración de metales preciosos en un mineral (Mason1992).
  • 3.4. Planeación de un muestreoNo existen reglas generales para realizar un muestreo de suelos, puesto que cada sitio requiere de un muestreoen particular. Por esto, es importante realizar un esquema de muestreo para cada sitio, el cual consiste en laubicación óptima de los puntos de muestreo y debe de ser lo suficientemente fiexible para permitir ajustesdurante las actividades en campo. Por ejemplo, la falta de acceso a los sitios de muestreo preseleccionados, lasformaciones de subsuelo no previstas o las condiciones climáticas, pueden demandar ajustes importantes en losplanes de muestreo (Valencia y Hernández 2002).Durante el diseño de un plan de muestreo para un suelo contaminado es importante considerar que lascaracterísticas físicas y químicas del sistema inciden en la transformación, retención y movimiento de loscontaminantes a través del suelo. El contenido de arcilla, materia orgánica, la textura, la permeabilidad, el pH,el potencial redox (Eh) y la capacidad de intercambio catiónico (CIC) del suelo, afectan la velocidad demigración y la forma química del contaminante (Mason 1992).El primer paso al planear la actividad de muestreo de un sitio contaminado es definir los objetivos, los cuales,en un muestreo ambiental, se dividen principalmente en metas exploratorias y de monitoreo. El muestreoexploratorio está diseñado para obtener información preliminar respecto del sitio, mientras que el muestreo demonitoreo, generalmente, tiene como fin adquirir información acerca de la varia- ción de concentraciones deparámetros específicos durante un lapso determinado o dentro de un área geográfica específica. Un plan demuestreo de monitoreo normalmente es más eficaz si va precedido del muestreo exploratorio o si existeinformación histórica sobre el parámetro de interés en el sitio (Mason 1992). Los objetivos específicos de cadaplan de muestreo para un sitio contaminado se deben definir clara y cuidadosamente antes de empezar elmuestreo. Los objetivos principales de un muestreo incluyen:. Identificar el grado general de contaminación en el suelo, agua, entre otros, así como el impacto potencialpara la salud y el ambiente.
  • . Obtener suficiente información para estimar los posibles riesgos (a la salud y al ambiente) debidos al tipo decontaminante.. Determinar si se requieren medidas de remediación o mitigación en el contexto del uso actual o futuro delsitio.. El muestreo, además, busca: (i) determinar niveles de fondo (en el caso de metales y metaloides); (ii)delimitar la distribución de contaminantes; (iii) estimar la variabilidad en las características del suelo y (iv) elmonitoreo del sitio.3.4.1. Factores a considerarEntre los factores más importantes que deben considerarse durante la elaboración o diseño de un plan demuestreo se encuentran los siguientes (Csuros y Csuros 2002):Plan de muestreo. Todo el personal involucrado debe conocer el plan del muestreo. Es también de sumaimportancia capturar en campo toda la información descrita en él.Parámetros de interés a evaluar. El interés de la investigación orientará el plan de muestreo. Entre losparámetros a evaluar pueden incluirse las concentraciones de los contaminantes y sus niveles de fondo, elestado de erosión o fertilidad del suelo, entre otros.Identificación del sitio. Dependiendo del interés de la investigación, se identifica y delimita el sitio de interés. Enel caso de evaluar niveles de contaminación, se debe considerar la migración de contaminantes a través de losdiferentes horizontes del suelo.Duración del estudio y frecuencia del muestreo. La duración del estudio y la frecuencia del muestreo, sonfactores definidos por el investigador, tomando en cuenta los cambios de clima en las distintas estaciones delaño, o la temporada (siembra, cosecha o limpieza), en caso de ser un suelo agrícola.Tipo de matriz a muestrear. En el caso del muestreo de suelos, la matriz es sólida; sin embargo, suconsistencia y permeabilidad pueden cambiar dependiendo de la cantidad de materia orgánica, arena, limo yarcilla que contenga, por lo que la distribución de contaminantes es diferente en cada caso.Número de muestras. Definida por el investigador, de acuerdo con algoritmos estadísticos, accesibilidad a lazonas de interés, capacidad analítica y económica. Es importante que antes de tomar una muestra, se remuevade la superficie la basura, pasto, piedras y hojas.Tipo de muestra. En función de la información que se requiere, las muestras pueden ser simples o compuestasy, pueden pertenecer a un estrato superficial o profundo (sección 3.5). En cualquier caso, todas las muestrasdeben ser representativas del área contaminada.Muestras control o testigo. Estas muestras pueden tomarse alejadas del sitio en estudio, pero deben tener lasmismas características del suelo de interés (origen, granulometría, etc.).Colección de muestras. La muestra se debe colectar mediante el uso de equipo apropiado y limpio. Esimportante que antes de la toma de cada muestra, los instrumentos de muestreo y guantes se limpien oreemplacen. Las muestras deben colectarse en los recipientes adecuados de acuerdo al tipo de análisis y debenetiquetarse inmediatamente.
  • Mediciones en campo. Algunas mediciones pueden realizarse en el sitio, directamente en el suelo o ensoluciones del mismo, por lo que es recomendable considerar el equipo necesario. Estas mediciones, engeneral, proporcionan información cualitativa de algunas condiciones del suelo, como pH, materia orgánica,sulfatos, carbonatos y cloruros, entre otros.Conservación de muestras. Las muestras colectadas deben guardarse en un lugar oscuro y fresco hasta suingreso al laboratorio. La mayoría de las muestras tomadas para evaluar contaminantes tienen un tiempo decaducidad. Cuando los análisis químicos son realizados después de este tiempo, los resultados tiene menor con-fiabilidad; en algunos casos, el tiempo de caducidad puede extenderse a través de la adición de sustanciasquímicas o conservando la muestra en refrigeración, en caso de evaluar contaminantes volátiles.3.4.2. Materiales e instrumentos para el muestreoLos instrumentos de muestreo adecuados son esenciales para realizar un buen muestreo y para las buenasprácticas de laboratorio. Pierre Gy recomienda cucharones y espátulas planos con lados paralelos, para evitar elmuestreo preferencial de partículas gruesas. Adicionalmente, debe considerarse y evitar la introducción deerrores en el laboratorio, debidos a un mal diseño de cortadores de rifle, espátulas y otras herramientas usadasen la preparación de submuestras para análisis (US EPA 1999, Gy 1992). A continuación se mencionan criteriosgenerales para la selección de herramientas, así como ejemplos de algunos materiales comunes para elmuestreo.a) Entre los principales criterios a considerar para la selección de herramientas adecuadas de muestreo, seencuentran los siguientes:. Tamaño de muestra necesaria para los análisis requeridos, con base en la(s) característica(s) o propiedad(es)de interés (sección 3.5, cuadro 9).. Tipo de suelo (arenoso, arcilloso, etc.) y condiciones de humedad.. Profundidad máxima a la que se va a tomar la muestra (sección 3.5, cuadro 10).. Accesibilidad al sitio de muestreo.. Requerimientos del personal para su manejo.b) Instrumentos para la toma de muestras. La selección de instrumentos adecuados es esencial para un buenmuestreo y para un buen análisis de laboratorio. Para el caso de suelos contaminados con metales, losutensilios para el muestreo deben ser de plástico, tefión o acero inoxidable; entre los más comunes seencuentran: palas rectas y curvas, picos, barrenas y barretas, nucleadores, espátulas, navajas y martillo degeólogo (figura 6). Figura 6. Instrumentos comúnmente usados para el muestreo de suelos: a) nucleadores; b) palanca “T”; c) espátulas; d) palas
  • c) Material de apoyo. Como material de apoyo durante un muestreo, es importante incluir: cartas topográficas,edafológicas, climáticas y geológicas, un plano cartográfico del sitio y mapas de carreteras. Adicionalmente, esrecomendable incluir una libreta para anotaciones, una cámara fotográfica y la cadena de custodia para lasmuestras.d) Material para la orientación y ubicación de los puntos de muestreo y para medir la zona.. Sistema global de posicionamiento (GPS). Lisímetro. Cinta métrica. Estacase) Material para guardar y transportar muestras. El material a emplear debe ser compatible con el material amuestrear, deber ser resistente a la ruptura y evitar reacciones químicas con la muestra y/o pérdidas porevaporación. El volumen del contenedor debe ser aproximadamente el mismo de la muestra, con la finalidad deminimizar el espacio vacío. Algunos de los materiales que pueden utilizarse para la colección de muestras son:. Frascos de vidrio (boca ancha y angosta): compuestos semi-volátiles, pesticidas y metales. Viales de vidrio: compuestos volátiles.. Contenedores de polietileno: conductividad.f ) Conservación de muestras. Los recipientes en los que se colectaron las muestras deben sellarseadecuadamente. En general, es recomendable evitar en lo posible el uso de agentes químicos para conservarmuestras de suelo. Para su conservación es conveniente mantenerlas en lugares frescos (4 a 6 °C) y oscuros.g) Material de seguridad y limpieza. Deben incluirse guantes de látex, agua desionizada, lentes de seguridad,toallas de papel, mascarilla para polvos y franelas.h) Material para etiquetar y marcar las muestras:. Etiquetas adheribles. Marcador indeleble. Cinta adhesiva
  • . Bolígrafos3.5. Características de una muestra Además de la selección de un diseño muestreo, es importanteestablecer desde el inicio del plan de muestreo, la profundidad a la cual se va a tomar la muestra (muestreosuperficial o vertical), así como el tipo de muestra (simples o compuestas) y cantidad de muestra a colectar.3.5.1. Tipos de muestras Simples.Las muestras colectadas en un tiempo y en un lugar particular son llamadas muestras simples. Este tipo demuestras representa las condiciones puntuales de una muestra de la población en el tiempo que fue colectado.Una muestra simple se puede considerar representativa cuando la composición de los contaminantes en unsuelo es estable, es decir, no varia con el tiempo (Csuros y Csuros 2002).Compuestas. Se le denomina muestra compuesta a aquellas muestras que son el producto de la mezcla demuestras individuales o submuestras, es decir, el resultado de la muestra compuesta es un promedio de lacomposición de muestras simples. Cada submuestra, que conforma la muestra compuesta, debe ser del mismovolumen y representar el mismo horizonte del suelo muestreado, por lo que solo deben mezclarse muestrasobtenidas de la misma profundidad y mediante el mismo diseño de muestreo, documentando el origen ytamaño de cada una. Las sub-muestras deben mezclarse en recipientes de acero inoxidable o de plástico(dependiendo del tipo de contaminante) en campo y posteriormente se debe realizar el procedimiento decuarteo. La preparación de muestras compuestas puede disminuir costos y tiempos en los análisis, debido a queel número de análisis fisicoquímicos y/o mineralógicos se reduce (Valencia y Hernández 2002).3.5.2. Tamaño de una muestraLa teoría de Gy para el “muestreo de materiales particulados” proporciona las bases para extraer una muestra apartir de un material y ayuda a definir el tamaño necesario para caracterizar un material como el suelo. Lateoría relaciona directamente el tamaño de partícula de un material con el tamaño de la muestra a tomar parauna unidad a evaluar, de tal manera que la cantidad de material necesario para el análisis de parámetrosespecíficos puede determinarse a través de conceptos desarrollados en la misma (US EPA 1999, Mason 1992,Gerlach y Nocerino 2003).El número total de muestras para determinar en un estudio ambiental depende directamente de: (i) el tipo deestudio; (ii) el tamaño del sitio a muestrear; (iii) el diseño de muestreo seleccionado; (iv) el tipo de muestras(simples o compuestas); (v) la exactitud y la precisión requerida, y (vi) los recursos económicos disponibles.Asimismo, la cantidad de suelo a colectar por cada muestra está determinada por el tipo y número deparámetros a analizar. En el cuadro 9 se muestran las cantidades de muestra requerida para cada tipo deanálisis. Cuadro 9. Cantidad de muestra requerida en función del análisis a realizar
  • Un muestreo correcto implica la minimización de los efectos de todos los errores de muestreo que puedencontrolarse a través de técnicas de muestreo. Esto incluye todos los errores mencionados en la sección 3.3,excepto la varianza relativa del error fundamental, la cual solo puede reducirse incrementando la masa de lamuestra o reduciendo el tamaño de partícula mediante trituración o molienda (Gerlach y Nocerino 2003).3.5.2. Profundidad de muestrasLa profundidad de un muestreo depende directamente del objetivo del mismo, es decir, si está diseñado paradeterminar afectaciones a la salud o ambientales (cuadro 10). Las propiedades físicas del suelo, su tamaño departícula, cohesión, humedad, y factores como la profundidad del lecho rocoso y del manto freático, limitarán laprofundidad a la que las muestras pueden tomarse, así como el método para su recolección (Ford et al. 1984). Cuadro 10. Profundidad recomendada para la toma de muestras en función del objetivo del muestreoExisten dos porciones de suelo que son importantes para un muestreo ambiental: (i) la capa superficial (0-15cm), que refieja la deposición de contaminantes transportados por aire o depositados recientemente; y (ii) lacapa sub-superficial, en donde pueden encontrarse contaminantes depositados por derrames de líquidos o porentierros y que pueden encontrarse a profundidades considerables (Mason 1992). Los métodos de muestreo decada porción de suelo son ligeramente diferentes y se describen a continuación.Muestreo superficial. Generalmente se realiza para estudios de evaluación de riesgos a la salud humana, lasmuestras se toman a una profundidad de 0 a 10 cm. El muestreo superficial busca determinar la concentraciónde contaminantes depositados recientemente en el suelo y que no tienden a migrar verticalmente bajo lasuperficie. Los instrumentos más comunes son espátulas, palas rectas y cucharones (Csuros y Csuros 2002).Muestreo vertical o profundo. Generalmente se realiza para estudios de clasificación de suelos de acuerdo a susperfiles verticales, es decir, requiere excavación. También se emplea para determinar la migración de uncontaminante, especialmente cuando estos son solubles y pueden migrar a través del suelo. Las muestras son
  • tomadas desde la superficie hasta donde termina la migración del contaminante. Los instrumentos quegeneralmente se utilizan para realizar este tipo de muestreo son nucleadores, barrenas, palas curvas ypalancas “T” (Csuros y Csuros 2002).3.6. Ejemplos de muestreoA continuación se presentan, de forma esquemática, dos ejemplos de un muestreo de suelos, con la finalidadde que el lector identifique, de manera más clara, las implicaciones y consideraciones que puede tener un plande muestreo.Ejemplo 1. Una empresa localizada en el punto cero (figura 7), necesita detectar una posible contaminación porPb debida a las emisiones de su chimenea, por lo que necesita saber la concentración de Pb en el suelo querodea a la empresa. Como se trata de una fuente fija, se puede realizar un muestreo sistemático polar y,debido a que la deposición del contaminante se realiza a través del viento, es conveniente tomar muestrassimples superficiales. Es importante ubicar cada punto de muestreo mediante coordenadas geográficas en unplano cartográfico de la zona para evitar que alguno caiga en lugares de difícil acceso o, en su caso, se deberámodificar su ubicación. Los puntos ubicados dentro de la ciudad tienen alta probabilidad de caer en zonasinaccesibles; en tal caso se deben elegir parques, terrenos baldíos, etc. cercanos. Por esta razón, en la realidad,los muestreos sistemáticos no necesariamente tienen forman simétrica.En este tipo de estudios es recomendable ubicar una o varias muestras testigo fuera de la zona delimitada porel estudio, con la finalidad de determinar el valor de fondo “natural” del elemento o sustancia contaminante.Este valor es muy importante para comprobar la contribución antropogénica del contaminante en el sitio. Figura 7. Muestreo sistemático polar (muestras simples) para delimitar una zona contaminadaEjemplo 2. Se busca determinar concentraciones históricas de contaminantes en un suelo. Para este tipo deestudio se debe realizar una excavación del suelo, para lo cual se plantea un muestreo sistemático en el sitio(puntos 1, 2, 3 y 4), que consiste en la toma de muestras compuestas a diferentes profundidades (A, B y C)(figura 8): (i) con un nucleador se toman estratos del suelo a diferentes profundidades en cada punto delterreno; (ii) las muestras 1A...4A, 1B…4B y 1C…4C se mezclan por separado en contenedores homogeneizandola muestra; (iii) ésta se divide en cuatro partes y se toman dos extremos opuestos (cuarteo), (iv) las muestrasresultantes se consideran una muestra compuesta representativa de diferentes profundidades de cada punto dela superficie de muestreo.
  • Figura 8. Muestreo sistemático con toma de muestras compuestas a diferentes profundidades