Your SlideShare is downloading. ×
0
COGS 107B - Winter 2010 - Lecture 7 - Auditory System I
COGS 107B - Winter 2010 - Lecture 7 - Auditory System I
COGS 107B - Winter 2010 - Lecture 7 - Auditory System I
COGS 107B - Winter 2010 - Lecture 7 - Auditory System I
COGS 107B - Winter 2010 - Lecture 7 - Auditory System I
COGS 107B - Winter 2010 - Lecture 7 - Auditory System I
COGS 107B - Winter 2010 - Lecture 7 - Auditory System I
COGS 107B - Winter 2010 - Lecture 7 - Auditory System I
COGS 107B - Winter 2010 - Lecture 7 - Auditory System I
COGS 107B - Winter 2010 - Lecture 7 - Auditory System I
COGS 107B - Winter 2010 - Lecture 7 - Auditory System I
COGS 107B - Winter 2010 - Lecture 7 - Auditory System I
COGS 107B - Winter 2010 - Lecture 7 - Auditory System I
COGS 107B - Winter 2010 - Lecture 7 - Auditory System I
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

COGS 107B - Winter 2010 - Lecture 7 - Auditory System I

476

Published on

COGS 107B - Winter 2010 - Lecture 7 - Auditory System I

COGS 107B - Winter 2010 - Lecture 7 - Auditory System I

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
476
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
14
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Cogs 107b – Systems Neuroscience www.dnitz.com lec7_01282010 – the auditory system I
  • 2. basic characterization of sound waves frequency power (db)
  • 3.  
  • 4. outer ear (pinna) shape reflects sound from different sources in different ways providing a possible source for localization of the height of a sound source
  • 5. middle ear bones amplify sound in a frequency-dependent fashion frequency-dependence of amplification is, in turn, modulated by middle ear muscle contractions frequency amplification (db)
  • 6. basilar membrane vibration is transduced into neural signals by hair cells
  • 7. the inner ear – transformation of pressure waves (sound) and their frequency characteristics (spectra) into neural signals
  • 8. time amplitude low-frequency middle-frequency high-frequency time amplitude Fourier transform varying stiffness of the basilar membrane results in a Fourier transform of the vibrations of the endolymph
  • 9. segregation of cochlear ganglion cell outputs to cochlear nucleus according to the position of their hair cell inputs – creation of a topographic representation of sound (tonotopy) that ultimately reaches primary auditory cortex
  • 10. Hair cell deflections toward the kinocilium generate greater depolarizations than comparable deflections away from the kinocilium generate hyperpolarizations. Because of this, hair cells in regions of the basilar membrane oscillating at high frequencies exhibit non-oscillating depolarizations in response to high frequency sounds. Hair cell neurotransmitter release cannot increase and decrease at frequencies equal to those of sounds in the upper half of the audible range. Yet, the peaks and valleys of high frequency basilar membrane oscillations deflect hair cell cilia equal amounts and in opposite directions. How, then, does a hair cell signal the presence of a high frequency tone through neurotransmitter release?
  • 11. cochlear nucleus neurons exhibit heterogeneous responses to inputs from ganglion cells. the response fields of each are described in frequency X amplitude response plots
  • 12. ascending pathways of the mammalian auditory system
  • 13. interaural time difference (ITD) interaural level difference (ILD) the ‘where’ of sound – sound source localization by comparison of inputs to the left and right ears not useful for persistent high frequency sounds (>2000 Hz) as hair cell responses do not oscillate in response to high frequency tones not useful for low frequency sounds as their amplitude is less impacted by the head what about sound source height?
  • 14. brainstem processing of auditory information yields sound source localization the organization of cochlear nucleus outputs to the brainstem yields responses to interaural time differences in medial superior olive neurons and interaural level differences in lateral superior olive neurons.

×