• Like
Noções de Probabilidade
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

Noções de Probabilidade

  • 19,236 views
Published

 

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to like this
No Downloads

Views

Total Views
19,236
On SlideShare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
250
Comments
1
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. NOÇÕES DE PROBABILIDADE 1. Espaço Amostral e Evento Espaço Amostral (E) é o conjunto de todos os resultados possíveis de um dado experimento. Exemplo: No lançamento de um dado, o espaço amostral é: E = {1, 2, 3, 4, 5, 6} seis possíveis (lados do dado). No lançamento de uma moeda, o espaço amostral é: E = {1, 2} dois possíveis (cara e coroa). Evento (A) é qualquer subconjunto de um espaço amostral. Exemplo: No lançamento de um dado, o evento A = {2} é um evento considerando os seis possíveis números (1, 2, 3, 4, 5, 6). A = {2} é um evento considerando a possível ocorrência de um número par (2, 4, 6).
  • 2. 2. Definição Probabilidade é o quociente entre o número de elementos do evento desejado [n(A)] e o número de elementos do espaço amostral [n(E)], desde que as amostras desse espaço amostral possam ocorrer de maneira eqüiprováveis (mesmas chances de ocorrer). n(A) é o número de elementos do evento desejado n(E) é o número de elementos do espaço amostral Exemplo: Num sorteio com número de 1 a 30, a probabilidade de ser sorteado um número múltiplo de 5 é: ESPAÇO AMOSTRAL E = {1, 2, 3, ….., 23, 24, 30} n(E) = 30 EVENTO DESEJADO A = {5, 10, 15, 20, 25, 30} n(A) = 6 = 6 30 = 0,20 ou 20%
  • 3. Exercício 1: Joga-se um dado “honesto” de seis faces e lê-se o número da face voltada para cima. Calcular a probabilidade de se obter: ESPAÇO AMOSTRAL E = {1, 2, 3, 4, 5, 6} a) EVENTO DESEJADO A = {3 } n(A) = 1 n(E) = 6 a) o número 3 b) um número par c) um número maior que 2 d) um número menor que 7 e) um número maior que 6 n(A) = 3 b) EVENTO DESEJADO A = {2, 4, 6} P(A) = 1 6 = 0,16667.. P(A) = 3 6 = 0,50 ou 50%
  • 4. c) EVENTO DESEJADO (> 2) A = {3, 4, 5, 6 } n(A) = 4 n(A) = 6 d) EVENTO DESEJADO (< 7) A = {1, 2, 3, 4, 5, 6} EVENTO CERTO e) EVENTO DESEJADO (> 6) A = { } n(A) = 0 EVENTO Impossível P(A) = 4 6 = 0,6666…. P(A) = 6 6 = 1 ou 100% P(A) = 0 6 = 0
  • 5. Exercício 2: Em um sorteio envolvendo os números naturais de 1 a 5000, a probabilidade de neste sorteio sair um número que seja múltiplo de cinco é: ESPAÇO AMOSTRAL E = {1, 2, 3, ….., 4998, 4999, 5000} EVENTO DESEJADO A = {5, 10, 15,…, 4990, 4995, 5000 } n(A) = ? n(E) = 5000 n(A) = 1000 a n = a 1 + (n – 1).r P.A! 5000 = 5 + (n – 1).5 5000 = 5 + 5n – 5 1000 = n P(A) = 1000 5000 = 0,20 x 100 20%
  • 6. Exercício 3: Uma urna contém 5 bolas brancas e 20 pretas. A probabilidade de sortearmos uma bola branca é de: ESPAÇO AMOSTRAL E = { B, B, B, B, B, P, P, P……..,P} EVENTO DESEJADO A = { B, B, B, B, B } n(A) = 5 n(E) = 25 P(A) = 5 25 = 0,20 x 100 20%
  • 7. Exercício 4: A probabilidade de uma bola branca aparecer ao se retirar uma única bola de uma urna contendo 4 bolas brancas, 3 vermelhas e 5 azuis, é: ESPAÇO AMOSTRAL E = { B, B, B, B , V, V, V, A, A, A, A, A } EVENTO DESEJADO A = { B, B, B, B } n(E) = 4 n(E) = 12 P(A) = 4 12 = 0,333… x 100 33%
  • 8. Exercício 5: Joga-se dois dados. Qual a probabilidade de obtermos, nas faces voltadas para cima, a soma 9.: ESPAÇO AMOSTRAL E = {(1,1), (1,2), (1, 3),…...…. (6, 4),…….(6,5), ….(6,6)} EVENTO DESEJADO A = {(3,6); (4, 5); (5, 4); (6, 3)} n(A) = 4 n(E) = 36 P(A) = 4 36 = 0,11… x 100 11%