NoSQL for the SQL Pro

2,151 views
1,862 views

Published on

slides from talk for Malibu SQL User Group - July 2013

Published in: Technology
1 Comment
5 Likes
Statistics
Notes
No Downloads
Views
Total views
2,151
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
85
Comments
1
Likes
5
Embeds 0
No embeds

No notes for slide
  • http://hadoop.apache.org/http://en.wikipedia.org/wiki/Apache_Hadoop
  • http://www.oracle.com/technetwork/bdc/hadoop-loader/overview/index.htmlhttp://www.microsoft.com/download/en/details.aspx?id=27584
  • http://hortonworks.com/technology/hortonworksdataplatform/More about Hbase, from the O’Reilly ‘Getting Ready for BigData’ report“Enter HBase, a column-oriented database that runs on top of HDFS. Modeled after Google’s BigTable, the project’s goal is to host billions of rows of data for rapid access. MapReduce can use HBase as both a source and a destination for its computations, and Hive and Pig can be used in combination with HBase.In order to grant random access to the data, HBase does impose a few restrictions: performance with Hive is 4-5 times slower than plain HDFS, and the maximum amount of data you can store is approximately a petabyte, versus HDFS’ limit of over 30PB.”http://www.cloudera.com/
  • https://www.hadooponazure.com/AccountDemo - http://www.youtube.com/watch?v=XcHz8aUDDN8 and http://www.youtube.com/watch?v=c7oHntP8HBI
  • http://hortonworks.com/technology/hortonworksdataplatform/More about Hbase, from the O’Reilly ‘Getting Ready for BigData’ report“Enter HBase, a column-oriented database that runs on top of HDFS. Modeled after Google’s BigTable, the project’s goal is to host billions of rows of data for rapid access. MapReduce can use HBase as both a source and a destination for its computations, and Hive and Pig can be used in combination with HBase.In order to grant random access to the data, HBase does impose a few restrictions: performance with Hive is 4-5 times slower than plain HDFS, and the maximum amount of data you can store is approximately a petabyte, versus HDFS’ limit of over 30PB.”http://www.cloudera.com/
  • Original Reference: Tom White’s Hadoop: The Definitive Guide (I made some modifications based on my experience)
  • http://lynnlangit.wordpress.com/2011/11/09/relational-cloud-storage-is-50x-more-expensive-than-nosql/
  • http://nosql-database.org/http://hadoop.apache.org/ & http://www.mongodb.org/Wikipedia - http://en.wikipedia.org/wiki/NoSQLList of noSQL databases – http://nosql-database.org/The good, the bad - http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
  • http://bigdatanerd.wordpress.com/2012/01/04/why-nosql-part-2-overview-of-data-modelrelational-nosql/http://docs.jboss.org/hibernate/ogm/3.0/reference/en-US/html_single/
  • http://en.wikipedia.org/wiki/Project_Voldemorthttp://aws.amazon.com/http://docs.amazonwebservices.com/amazondynamodb/latest/developerguide/Introduction.htmlhttp://www.allthingsdistributed.com/2012/01/amazon-dynamodb.html
  • http://code.google.comAccess via REST APIsVery Cheap, but not much functionality includedLots of code to write for application developmentBut…can be a good backup solution
  • http://stage.hypertable.com/index.php/documentation/architecture/http://code.google.com/appengine/http://code.google.com/appengine/articles/datastore/overview.html
  • http://cwebbbi.wordpress.com/2012/02/14/so-what-is-the-bi-semantic-model/http://www.databasejournal.com/features/mssql/understanding-new-column-store-index-of-sql-server-2012.htmlhttp://dbmsmusings.blogspot.com/2010/03/distinguishing-two-major-types-of_29.htmlhttp://ayende.com/blog/4500/that-no-sql-thing-column-family-databases
  • http://en.wikipedia.org/wiki/MongoDBhttp://www.mongodb.org/downloadshttp://www.mongodb.org/display/DOCS/Drivers
  • http://en.wikipedia.org/wiki/MongoDBhttp://www.mongodb.org/downloadshttp://www.mongodb.org/display/DOCS/Drivers
  • http://www.infinitegraph.com/what-is-a-graph-database.htmlhttp://en.wikipedia.org/wiki/Graph_databasehttp://www.freebase.com/
  • For Google - http://code.google.comFor AWS - https://console.aws.amazon.com/console/home
  • Hadoop on AWS - http://wiki.apache.org/hadoop/AmazonEC2
  • http://rickosborne.org/download/SQL-to-MongoDB.pdf
  • http://www.microsoft.com/en-us/bi/default.aspxhttp://dennyglee.com/Demos -   http://www.youtube.com/watch?v=djfpPsGwm6Aand http://www.youtube.com/watch?v=uh9bKWO1K7U
  • DataMarkets – InfoChimps, Factual, DataMarket, Windows Azure Data Marketplace, Wolfram Alpha, Datasifthttp://www.microsoft.com/en-us/sqlazurelabs/default.aspx andhttp://www.microsoft.com/en-us/sqlazurelabs/labs/dataexplorer.aspxhttps://datamarket.azure.com/http://www.freebase.com/http://code.google.com/p/google-refine/
  • http://www.inboundlogistics.com/cms/article/m2m-101/http://www.freebase.com/Hilary Mason’s datasets - https://bitly.com/bundles/hmason/1
  • Lynn
  • NoSQL for the SQL Pro

    1. 1. NoSQL for the SQL Server Pro (or “Practical Big Data”) Lynn Langit July 2013 – Malibu SQL UG
    2. 2. Data Expertise / Lynn Langit • Industry awards – Microsoft – MVP for SQL Server – Google – GDE for Cloud Platform – 10Gen – Master for MongoDB • Practicing Architect • Technical author / trainer – Pluralsight – Google Cloud Series – DevelopMentor – SQL Server 2012 Series – 2 books on SQL Server BI – Cloudera trainer (certified) • Former MSFT FTE – 4 years
    3. 3. BigData Pipeline - STEP 1 – Acquire Acquire Process Store Query & Mine Visualize
    4. 4. BigData = ‘Next State’ Questions • What could happen? • Why didn’t this happen? • When will the next new thing happen? • What will the next new thing be? • What happens? Collecting Behavioral data
    5. 5. BigData Pipeline – STEP 2 - Process Acquire Process Store Query & Mine Visualize
    6. 6. Is Big Data = NoSQL and just Hadoop? HUGE Hype factor since 2011 Apache Hadoop • a software framework that supports data-intensive distributed applications • under a free license enables applications to work with thousands of nodes and petabytes of data • was inspired by Google's MapReduce and Google File System (GFS) papers
    7. 7. Hadoop in the Enterprise
    8. 8. How you ‘get’ Hadoop • roll your own Open source • Cloudera • MapR • Hortonworks • More… Commercial distribution • AWS • HDInsight Rent it via the cloud
    9. 9. Demo - HDInsight
    10. 10. About Hadoop MapReduce Image from - https://developers.google.com/appengine/docs/python/images/mapreduce_mapshuffle.png
    11. 11. Demo - HDInsight – MapReduce w/Java
    12. 12. Working with Hadoop
    13. 13. Example Comparison: RDBMS vs. Hadoop Traditional RDBMS Hadoop / MapReduce Data Size Gigabytes (Terabytes) Petabytes and greater Access Interactive and Batch Batch – NOT Interactive Updates Read / Write many times Write once, Read many times Structure Static Schema Dynamic Schema Integrity High (ACID) Low Scaling Nonlinear Linear Query Response Time Can be near immediate Has latency (due to batch processing)
    14. 14. BigData Pipeline STEP 3 – Store Acquire Process Store Query & Mine Visualize
    15. 15. “Small” BigData vs. “Big” BigData Hadoop NoSQL RDBMS Hadoop NoSQL RDBMS On Premises In the Cloud
    16. 16. Cloud-hosted NoSQL up to 50x CHEAPER
    17. 17. So many NoSQL options • More than just the Elephant in the room • Over 120+ types of NoSQL databases
    18. 18. Flavors of NoSQL Key/Value Volatile Key/value Persistent Wide-Column Document Graph
    19. 19. Key / Value Database • Just keys and values – No schema • Persistent or Volatile • Examples – AWS Dynamo DB – Riak
    20. 20. DEMO - AWS DynamoDB • Key/Value store on the AWS cloud
    21. 21. NoSQL BLOB Storage Buckets in the Cloud • Amazon – S3 or Glacier • Google – Cloud Storage • Microsoft Azure BLOBS • Others – Dropbox – Box – More…
    22. 22. DEMO - Battle of the Buckets • Google Cloud Storage VS. • Windows Azure BLOBS VS. • AWS S3 / Glacier
    23. 23. Column Database • Wide, sparse column sets • Schema-light • Examples: – Cassandra – HBase w/Hadoop – BigTable – GAE HR DS
    24. 24. Types of Column Databases • Column-families – Non-relational – Sparse – Examples: • HBase • Cassandra • xVelocity (SQL 2012 Tabular) • Column-stores – Relational – Dense – Example: • SQL Server 2012 – Columnstore index
    25. 25. DEMO – SQL Server ‘NoSQL’ • SQL Server 2012 Columnstore Index • SQL Server 2012 Tabular Model (SSAS)
    26. 26. Document Database (Mongo DB) • document-oriented (collection of JSON documents) w/semi structured data – Encodings include BSON, JSON, XML… • binary forms – PDF, Microsoft Office documents -- Word, Excel…) • Examples: – MongoDB – Couchbase
    27. 27. Demo - Mongo DB
    28. 28. Graph Databases • a lot of many-to-many relationships • recursive self-joins • when your primary objective is quickly finding connections, patterns and relationships between the objects within lots of data • Examples: – Neo4J – Google Freebase
    29. 29. DEMO – Neo4J
    30. 30. “Small” BigData vs. “Big” BigData Hadoop Key/Value or Column Document or Graph RDBMS On Premise or In the Cloud
    31. 31. Cloud-hosted RDBMS • AWS RDS – SQL Server, mySQL, Oracle – Medium cost – Solid feature set, i.e. backup, snapshot – Use existing tooling • Google – mySQL – Lowest cost – Most limited RDBMS functionality • Microsoft – SQLAzure – Highest cost
    32. 32. DEMO - AWS RDS • SQL Server, MySQL or Oracle • Essential to understand pricing models
    33. 33. Image - http://blog.outsourcing-partners.com/wp-content/uploads/2012/10/performance.png
    34. 34. NoSQL Applied SocialGames ProductCatalogs Socialaggregators LogFiles Line-of-Business Columnstore HBase Key/Value DynamoDB Document MongoDB Graph Neo4j RDBMS SQL Server
    35. 35. Cloud Offerings– RDBMS AND NoSQL AWS Google Microsoft RDBMS RDS – all major mySQL SQL Azure NoSQL buckets S3 or Glacier Cloud Storage Azure Blobs NoSQL Key-Value DynamoDB H/R Data on GAE Azure Tables Streaming ML or (Mahout) Custom EC2 Prospective Search & Prediction API StreamInsight NoSQL Document or Graph MongoDB on EC2 Freebase MongoDB on Windows Azure NoSQL – Column Hadoop (HBase) Elastic MapReduce using S3 & EC2 none HDInsight Dremel/Warehousi ng RedShift BigQuery none
    36. 36. BigData Pipeline STEP 4 – Query Acquire Process Store Query & Mine Visualize
    37. 37. AlwaysMapReduce?
    38. 38. Can Excel help? • Connector to Hadoop • Data Explorer • Data Quality Services • Master Data Services • Integration with Azure Data Market • Visualize with PowerView • Data Mining w/Predixion
    39. 39. Demo - Hadoop Connector to Excel
    40. 40. Other types of cloud data services Hosting public datasets • Pay to read • Earn revenue by offering for read Cleaning / matching (your) data • ETL – Microsoft Data Explorer, Google Refine • Data Quality – Windows Azure Data Market, InfoChimps, DataMarket.com
    41. 41. Collecting BigData • Sensors everywhere • Structured, Semi-structured, Unstructured vs. Data Standards • M2M • Public Datasets – Freebase – Azure DataMarket – Hillary Mason’s list 41
    42. 42. NoSQL To-Do List Understand types of NoSQL databases • Use NoSQL when business needs designate • Use the right type of NoSQL for your business problem Try out NoSQL on the cloud • Quick and cheap for behavioral data • Mashup cloud datasets • Good for specialized use cases, i.e. dev, test , training environments Learn NoSQL access technologies & services • New query languages, i.e. MapReduce, R, Infer.NET • New query tools (vendor-specific) – Google Refine, Amazon Karmasphere, Microsoft Excel connectors, etc… • Windows Azure Data Market, other public data markets
    43. 43. www.TeachingKidsProgramming.org • Free Courseware (Java, Small Basic or C# [on Pluralsight]) • Do a Recipe  Teach a Kid (Ages 10 ++) • VOTE at http://www.azureDevs.com, CONFIRM via email and SHARE (tweet) • recipes)
    44. 44. VOTE CONFIRM SHARE
    45. 45. Keep Learning • Twitter: @LynnLangit • YouTube: http://www.youtube.com/user/SoCalDevGal • Hire me – To help build your BI/Big Data solution – To teach your team next gen BI – To learn more about using NoSQL solutions

    ×