Your SlideShare is downloading. ×
0
Wk14 CL1823 Chemistry of metals  I
Wk14 CL1823 Chemistry of metals  I
Wk14 CL1823 Chemistry of metals  I
Wk14 CL1823 Chemistry of metals  I
Wk14 CL1823 Chemistry of metals  I
Wk14 CL1823 Chemistry of metals  I
Wk14 CL1823 Chemistry of metals  I
Wk14 CL1823 Chemistry of metals  I
Wk14 CL1823 Chemistry of metals  I
Wk14 CL1823 Chemistry of metals  I
Wk14 CL1823 Chemistry of metals  I
Wk14 CL1823 Chemistry of metals  I
Wk14 CL1823 Chemistry of metals  I
Wk14 CL1823 Chemistry of metals  I
Wk14 CL1823 Chemistry of metals  I
Wk14 CL1823 Chemistry of metals  I
Wk14 CL1823 Chemistry of metals  I
Wk14 CL1823 Chemistry of metals  I
Wk14 CL1823 Chemistry of metals  I
Wk14 CL1823 Chemistry of metals  I
Wk14 CL1823 Chemistry of metals  I
Wk14 CL1823 Chemistry of metals  I
Wk14 CL1823 Chemistry of metals  I
Wk14 CL1823 Chemistry of metals  I
Wk14 CL1823 Chemistry of metals  I
Wk14 CL1823 Chemistry of metals  I
Wk14 CL1823 Chemistry of metals  I
Wk14 CL1823 Chemistry of metals  I
Wk14 CL1823 Chemistry of metals  I
Wk14 CL1823 Chemistry of metals  I
Wk14 CL1823 Chemistry of metals  I
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Wk14 CL1823 Chemistry of metals I

1,833

Published on

Published in: Education
0 Comments
6 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
1,833
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
6
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide
  • Metalloids are Boron, Silicon, Germanium, Arsenic, Anitmony, Tellurium, Polonium, Astatine
  • Transcript

    • 1. Chemistry of Metals (I)
    • 2. Objectives <ul><li>To learn the differences between metal & non-metal </li></ul><ul><li>Metal: </li></ul><ul><ul><li>To learn the sources of metal </li></ul></ul><ul><ul><li>To learn the main group metals found in life sciences </li></ul></ul><ul><li>Alloys: </li></ul><ul><ul><li>To learn the formation and some examples of alloys </li></ul></ul><ul><li>Transition metal: </li></ul><ul><ul><li>To learn the properties </li></ul></ul><ul><ul><li>electronic configuration </li></ul></ul><ul><ul><li>oxidation states </li></ul></ul>
    • 3. Differences between metals and non-Metals <ul><li>Elements in the periodic table are divided into metals and non-metals by a diagonal line of elements. </li></ul><ul><li>Metals on the left . </li></ul><ul><li>Non-metals on the right . </li></ul>Metal metalloid non-metal transition metal
    • 4. Differences between metals & non-metals <ul><li>solid at room temperature (except mercury) </li></ul><ul><li>lustrous surface </li></ul>Metals <ul><li>Mercury </li></ul><ul><li>– liquid at room temperature </li></ul><ul><li>Malleable – can be </li></ul><ul><li>deformed without breaking </li></ul><ul><li>Ductile – can be </li></ul><ul><li>pulled into thin wire </li></ul><ul><li>Heat & electricity conductor </li></ul>
    • 5. Differences between metals & non-metals <ul><li>low melting point solid </li></ul><ul><li>liquid or gas </li></ul><ul><li>Not lustrous surface </li></ul>Non-Metals <ul><li>Non-malleable & brittle </li></ul><ul><li>Poor heat and electricity conductor </li></ul>
    • 6. Differences between metals & non-metals Metals Non-metals Most are solids at room temperature (except mercury) Most are solids of low melting points, liquids or gases Most have a lustrous surface Most lack a lustrous surface Malleable and ductile Non-malleable and brittle Good conductors of heat and electricity Poor conductors of heat and electricity (except graphite) Lose electrons to form positive ions (cation) Gain electrons to form negative ions (anion) Oxides are basic (e.g. CaO) Oxides are acidic (e.g. SO 2 )
    • 7. Malleability <ul><li>A malleable metal can easily be deformed, especially by hammering or rolling , without cracking. </li></ul><ul><li>Example of malleable metal: </li></ul><ul><ul><li>Gold (the most malleable metal) </li></ul></ul><ul><ul><li>Aluminium </li></ul></ul><ul><li>Malleability occurs as a result of the metallic bonding . </li></ul><ul><ul><li>The attractive forces between the metal atoms are strong but not rigid . When a force is applied, the layers of metal can slide over one another. </li></ul></ul>Differences between metals & non-metals force Metal atoms before force applied Metal atoms after force applied
    • 8. Ductility <ul><li>The ability of metal to be drawn into a wire or thread without breaking. </li></ul><ul><li>Gold, copper and aluminium have high ductility. </li></ul>Differences between metals & non-metals
    • 9. Metalloids <ul><li>Elements that lie on the yellow diagonal line exhibit both metallic and non-metallic properties, they are called metalloids . </li></ul><ul><li>Boron </li></ul><ul><li>Silicon </li></ul><ul><li>Germanium </li></ul><ul><li>Arsenic </li></ul><ul><li>Antimony </li></ul><ul><li>Tellurium </li></ul><ul><li>Polonium </li></ul><ul><li>Astatine </li></ul>Differences between metals & non-metals metal metalloid non-metal transition metal
    • 10. Sources of Metals <ul><li>Most metals are obtained from ores . </li></ul><ul><li>Ores are mixtures of minerals (contains metal) and gangue (sand, clay and unwanted materials) </li></ul><ul><li>To obtain the desired metal, minerals must be separated from the gangue via a technology called metallurgy . </li></ul><ul><li>Examples of mineral: </li></ul><ul><li>Galena (PbS) Rutile (TiO 2 ) Cinnabar (HgS) </li></ul>Source of lead Source of titanium Source of mercury Metals
    • 11. Extraction of Metals from Ores <ul><li>The science and technology used to extract metals from natural sources is called metallurgy . </li></ul><ul><li>Metallurgy process: </li></ul>Mining <ul><li>Separation </li></ul><ul><li>Ore is crushed and treated to separate </li></ul><ul><li>mineral from gangue </li></ul><ul><li>Reduction </li></ul><ul><li>Reduce metal oxides </li></ul><ul><li>or metal sulfides to </li></ul><ul><li>obtain the crude metal </li></ul><ul><li>Example: </li></ul><ul><li>Chemical process </li></ul><ul><li>Electrolysis </li></ul><ul><li>Refine/ purification </li></ul><ul><li>Further treatment of </li></ul><ul><li>crude/ relatively impure </li></ul><ul><li>metal to produce purer </li></ul><ul><li>metal </li></ul><ul><li>Example: </li></ul><ul><li>Distillation </li></ul><ul><li>Chemical purification </li></ul><ul><li>Electrorefining </li></ul>Metals
    • 12. Example: The Extraction of Iron <ul><li>Iron is found in many types of ores, such as </li></ul><ul><ul><ul><li>Hematite (Fe 2 O 3 ) </li></ul></ul></ul><ul><ul><ul><li>Magnetite (Fe 3 O 4 ) </li></ul></ul></ul><ul><ul><ul><li>Pyrites (FeS 2 ) </li></ul></ul></ul><ul><ul><ul><li>Siderite (FeCO 3 ) </li></ul></ul></ul>Hematite: Platy black Magnetite: Octahedral black Pyrites: Lustrous cube Siderite: Bladed crystal Extraction of Metals from Ores Metals
    • 13. <ul><li>These ores (hematites, magnetites etc.) are reduced through chemical reaction to produce iron (Fe). </li></ul><ul><li>Coke is used as the reducing agent </li></ul><ul><ul><ul><li>Coke is coal that has been heated in the absence of air to drive off volatile component. </li></ul></ul></ul><ul><ul><ul><li>85 – 90% of coke is carbon (C). </li></ul></ul></ul>Example: The Extraction of Iron http://www.bbc.co.uk/history/british/victoria ns/launch_ani_blast_furnace.shtml charcoal coal coke Blast furnace Extraction of Metals from Ores Metals
    • 14. <ul><li>Stage 1: Reaction of coke with oxygen </li></ul><ul><li>C(s) + O 2 (g)  CO 2 (g) </li></ul><ul><li>Stage 2: Reduction of carbon dioxide with coke </li></ul><ul><li>CO 2 (g) + C(s)  2 CO(g) </li></ul><ul><li>Stage 3: Reduction of iron ores with carbon monoxide to produce molten iron </li></ul><ul><li>Fe 2 O 3 (s) + 3 CO(g)  2 Fe( l ) + 3 CO 2 (g) </li></ul>Example: The Extraction of Iron Extraction of Metals from Ores Metals
    • 15. Main Group Metals in Life Sciences <ul><li>Sodium (Na) </li></ul><ul><li>Na + is the principal ion in extracellular fluid (outside of cells). </li></ul><ul><li>Na + ion is responsible for transmission of nerve impulses in the </li></ul><ul><li>central nervous system. </li></ul><ul><li>Excessive dietary intake of Na + leads to hypertension. </li></ul>Metals
    • 16. <ul><li>Potassium (K) </li></ul><ul><li>K + is the principal ion in intracellular fluid (inside of cells). </li></ul><ul><li>K + ion is also responsible for transmission of nerve impulses in the central nervous system. </li></ul><ul><li>Patients with kidney diseases should have low dietary intake of K + in order to avoid cardiac arrhythmias (abnormal heartbeat). </li></ul>Main Group Metals in Life Sciences Metals
    • 17. <ul><li>Magnesium (Mg) </li></ul><ul><li>Mg 2+ is the central ion in chlorophyll , a plant pigment which is </li></ul><ul><li>involved in photosynthesis. </li></ul><ul><li>Mg 2+ is needed for proper functioning of various enzymes in our </li></ul><ul><li>body. </li></ul>Main Group Metals in Life Sciences Metals
    • 18. <ul><li>Calcium (Ca) </li></ul><ul><li>Ca is an essential structural component in the skeleton of vertebrates and the shells of invertebrates. </li></ul><ul><li>Ca is needed for muscle contraction. </li></ul>Main Group Metals in Life Sciences Metals
    • 19. <ul><li>An alloy is a combination of different metals . </li></ul><ul><li>It can be a combination of metals and non-metals . </li></ul><ul><li>The properties of alloy are different from the components. </li></ul>Formation of alloys Red sphere = Fe atom Blue sphere = B atom Red sphere = Fe atom Blue sphere = B atom Yellow sphere = Y atom Alloys
    • 20. <ul><li>The atoms of a metal are normally arranged in regular rows. The layers can slide over one another easily. </li></ul>Formation of alloys Alloys force Metal atoms before force applied Metal atoms after force applied
    • 21. <ul><li>When another metal is added, the metal atoms are prevented from sliding. </li></ul><ul><li>Example: The larger zinc atoms stop the sliding of the copper atoms in brass. </li></ul><ul><li>The resulting alloy is stronger, harder and less likely to be deformed. </li></ul>Formation of alloys Alloys
    • 22. Examples <ul><li>Bronze (copper & tin) </li></ul><ul><li>Brass (copper & zinc) </li></ul><ul><li>Pewter (tin, copper & lead) </li></ul><ul><li>White gold (gold & nickel/palladium) </li></ul><ul><li>Magnalium (aluminium & magnesium ) </li></ul>Bronze Brass Pewter White gold Magnalium Alloys
    • 23. Transition Metals Introduction
    • 24. Transition Metals (d-block elements) Introduction
    • 25. <ul><li>Physical properties: </li></ul><ul><ul><ul><ul><li>Similar to metals – shiny surface, malleable, ductile, good conductors of electricity and heat. </li></ul></ul></ul></ul><ul><li>Chemical properties: </li></ul><ul><ul><ul><ul><li>Less reactive than alkali (group 1A. Eg. Na, K) and alkaline earth metals (group 2A. Eg. Mg, Ca, ). </li></ul></ul></ul></ul><ul><li>Most have more than one oxidation state </li></ul><ul><ul><ul><li>E.g. MnO  +2 </li></ul></ul></ul><ul><ul><ul><li>MnO 2  +4 </li></ul></ul></ul><ul><ul><ul><li> MnO 4 –  +7 </li></ul></ul></ul><ul><li>Some have magnetic properties </li></ul><ul><ul><ul><li>e.g. iron, nickel. </li></ul></ul></ul>Manganese – Mn Chromium – Cr Transition Metals Properties
    • 26. <ul><li>Form complexes with neutral molecules </li></ul><ul><ul><ul><li>e.g. [Cr(H 2 O) 4 Cl 2 ]Cl </li></ul></ul></ul><ul><li>Many compounds are colored </li></ul><ul><ul><ul><li>e.g. CuSO 4 · 5H 2 O – Blue </li></ul></ul></ul><ul><ul><ul><li>CrO 3 – Purple </li></ul></ul></ul>CuSO 4 · 5H 2 O CrO 3 http://www.bbc.co.uk/history/british/victorians/launch_ani_blast_furnace.shtml http://www.metacafe.com/watch/650550/nitric_acid_acts_upon_a_copper_penny_experiment/ Transition Metals Properties
    • 27. <ul><li>The difference in properties of transition metals and main group metals is due to the presence of electrons in the d-subshell . </li></ul><ul><li>In the 1 st series of transition metal, electrons are first filled in 4s-subshell before 3d-subshell . </li></ul>Transition Metals Electronic Configurations
    • 28. <ul><li>Electronic configurations of transition metals depend on: </li></ul><ul><ul><li>orbital energy level (eg. 4s lower than 3d) and </li></ul></ul><ul><ul><li>Hund’s rule. </li></ul></ul><ul><li>Sc (21e) [Ar]3d 1 4s 2 Fe (26e) [Ar]3d 6 4s 2 </li></ul><ul><li>Ti (22e) [Ar]3d 2 4s 2 Co (27e) [Ar]3d 7 4s 2 </li></ul><ul><li>V (23e) [Ar]3d 3 4s 2 Ni (28e) [Ar]3d 8 4s 2 </li></ul><ul><li>Cr (24e) [Ar]3d 5 4s 1 Cu (29e) [Ar]3d 10 4s 1 </li></ul><ul><li>Mn (25e) [Ar]3d 5 4s 2 Zn (30e) [Ar]3d 10 4s 2 </li></ul><ul><li>Note: [Ar] = 1s 2 2s 2 2p 6 3s 2 3p 6 (18e) </li></ul>Transition Metals Electronic Configurations
    • 29. Electronic Configurations <ul><li>During ionisation, electrons are first removed from 4s-subshell before 3d-subshell. </li></ul><ul><li>Examples: </li></ul><ul><li>Co (27e) [Ar]3d 7 4s 2 </li></ul><ul><li>Co 2+ [Ar]3d 7 </li></ul><ul><li>Co 3+ [Ar]3d 6 </li></ul><ul><li>Fe (26e) [Ar]3d 6 4s 2 </li></ul><ul><li>Fe 2+ [Ar]3d 6 </li></ul><ul><li>Fe 3+ [Ar]3d 5 </li></ul>Transition Metals
    • 30. Oxidation States of Transition Metals <ul><li>Sc Ti V Cr Mn Fe Co Ni Cu Zn </li></ul><ul><li>+1 +1 </li></ul><ul><li>+2 +2 +2 +2 +2 +2 +2 +2 +2 </li></ul><ul><li>+3 +3 +3 +3 +3 +3 +3 +3 +3 </li></ul><ul><li>+4 +4 +4 +4 +4 +4 +4 </li></ul><ul><li>+5 +5 +5 +5 </li></ul><ul><li>+6 +6 +6 </li></ul><ul><li> +7 </li></ul><ul><li>Common oxidation states are highlighted in yellow . </li></ul><ul><li>Note: </li></ul><ul><li>Scandium only occurs in the +3 oxidation state </li></ul><ul><li>Zinc only occurs in the +2 oxidation state. Why? </li></ul><ul><ul><li>Stable electron configuration for Sc 3+ and Zn 2+ </li></ul></ul><ul><ul><li>Sc: [Ar]3d 1 4s 2  Sc 3+ : [Ar] (eg. ScCl 3 ) </li></ul></ul><ul><ul><li>Zn: [Ar]3d 10 4s 2  Zn 2+ : [Ar] 3d 10 (eg. ZnCl 2 ) </li></ul></ul>Transition Metals
    • 31. Summary <ul><li>The differences between metal & non-metal </li></ul><ul><li>The sources of metal </li></ul><ul><li>The formation and types of alloys </li></ul><ul><li>The main group metals found in life sciences </li></ul><ul><li>The properties, electronic configuration and oxidation states of transition metals </li></ul>

    ×