Your SlideShare is downloading. ×
0
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Vital Water
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Vital Water

1,987

Published on

Water

Water

Published in: Technology, Business
2 Comments
1 Like
Statistics
Notes
No Downloads
Views
Total Views
1,987
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
212
Comments
2
Likes
1
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide
  • Transcript

    • 1. Vital Water Alice Newton University of Algarve Joint Master in Water and Coastal Management University of Bergen 2005-2006
    • 2. Bibliography <ul><li>Books : </li></ul><ul><ul><li>Philip Ball 1999: H 2 O A biography of Water ISBN 0 75381 092 1 </li></ul></ul><ul><ul><li>Peter H. Gleick 1993: Water in Crisis Oxford University Press </li></ul></ul><ul><ul><li>Open University course team 1997 : Seawater: its composition, properties and behaviour </li></ul></ul><ul><ul><li>Frank J. Millero 1996 : Chemical Oceanography, CRC Press </li></ul></ul>
    • 3. Bibliography 2 <ul><li>Web </li></ul><ul><ul><li>United Nations Environment Program www.unep.org Vital Water Graphics </li></ul></ul><ul><ul><li>Global International Water Assessment www.giwa.net </li></ul></ul><ul><ul><li>Intergovernemntal Panel on Climate Change www.IPCC.org </li></ul></ul>
    • 4. Objectives <ul><li>Vital water is an introductory lecture that relates both to integrated river basin management or integrated coastal zone management </li></ul><ul><li>It also links up with many other modules in the course </li></ul>
    • 5. Requirements <ul><li>No special skills are required for this lecture </li></ul><ul><li>A knowledge of basic inorganic and environmental chemistry is useful. </li></ul>
    • 6. Programme <ul><li>The constituents of water </li></ul><ul><li>The water molecule </li></ul><ul><li>Properties of water </li></ul><ul><li>The origin of water </li></ul><ul><li>The hydrological cycle </li></ul><ul><li>Composition of natural waters </li></ul><ul><li>Ice and glaciation </li></ul><ul><li>Water and life </li></ul><ul><li>Water the destroyer </li></ul><ul><li>Water and society, resources, uses and abuses </li></ul>
    • 7. Learning outcomes <ul><li>After completing this module you should know: that although water is a very common substance on Earth, it has strange properties and is a scarce resource </li></ul><ul><li>After completing this module you should be able to: Explain why water is so special and what some consequences are for water and coastal management </li></ul>
    • 8. Other skills <ul><li>Consult scientific literature and websites </li></ul>
    • 9. The Constituents of Water… a little chemistry <ul><li>Hydrogen (H ) </li></ul><ul><li>Oxygen (O) </li></ul><ul><li>H 2 O is the basic unit of water </li></ul><ul><li>Ratio 2:1 is a consequence of the atomic structure </li></ul>
    • 10. Hydrogen (H) <ul><li>About ¾ of the mass of the Universe is Hydrogen! </li></ul><ul><li>H atom has 1 proton </li></ul><ul><li>H usually has no neutrons, so the atomic mass is 1 </li></ul><ul><li>0.000015 % of H has 1 neutron, so atomic mass is 2 (1 proton + 1 neutron) </li></ul><ul><ul><li>This isotope (different number of neutrons) is called “heavy” water, Deuterium, or Hydrogen-2 </li></ul></ul>
    • 11. Oxygen (O) <ul><li>O atom has 8 protons </li></ul><ul><li>Mass of O is about 16 x mass of H (different isotopes and neutons) </li></ul><ul><li>O can have 7, 8 , 9 or 10 neutrons </li></ul><ul><li>O is the third most abundant element in the Universe </li></ul><ul><li>(the second most abundant element in the Universe is Helium, relatively unreactive) </li></ul>
    • 12. The Origin of H and O… a little cosmo-chemistry <ul><li>Current scientific theory </li></ul><ul><li>Protons (H + ) formed a millionth of a second after Big Bang, T~ a trillion degrees </li></ul><ul><li>Nucleosynthesis started one hundredth of a second later (protons+neutrons), T~ three billion degrees </li></ul><ul><li>Hydrogen atoms form, T~ 4000 ° C </li></ul>
    • 13. The Origin of H, O and Water <ul><li>Gravity leads to formation of Galaxies and Stars Hans Bethe 1939 </li></ul><ul><li>Elements (C-N- O) formed in stars by fusion </li></ul><ul><li>Mainly generates 15 O but also 16 O 17 O Burbridge,Burbridge, Fowler and Hoyle 1957 </li></ul><ul><li>Water formed by reaction of H and O </li></ul>
    • 14. From “Element” to compound <ul><li>Water classically was thought of as an Element </li></ul><ul><li>Lavoisiers’ experiments 1784 prove that water is formed by burning Hydrogen in the presence of oxygen. Hydrogen means “water former” </li></ul><ul><li>Nicholson and Carlisle split water by electrolysis to form hydrogen and oxygen </li></ul><ul><li>Berzelius recognized the fixed ratios H=2, O=1 </li></ul>
    • 15. Water as a Liquid
    • 16. Liquid water <ul><li>At present most of the water on Earth is in the liquid phase </li></ul><ul><li>Most liquid water (~97%) is in seawater </li></ul><ul><li>Water is the main component (~96%) of seawater </li></ul>
    • 17. The Water Molecule <ul><li>Hydrogen (H) and Oxygen (O) </li></ul><ul><li>H 2 O is the basic unit of water </li></ul><ul><li>Ratio 2:1 </li></ul><ul><li>Consequence of atomic and molecular structure </li></ul>
    • 18. Molecular Structure of Water <ul><li>Hydrogen atoms have a partial positive charge. </li></ul><ul><li>Oxygen has 2 unbonded pairs of electrons with partial negative charges. </li></ul><ul><li>Tetrahedral, distorted by charges to minimize repulsion </li></ul><ul><li>Molecular structure is &quot;bent&quot; to yield a 104.5° angle between the hydrogen atoms instead of 109.5° for a regular tetrahedron . </li></ul>
    • 19. Hydrogen bonds <ul><li>A partly positive hydrogen atom of one water molecule attracts the partly negative unbonded electron pair in the oxygen atom, forming a hydrogen bond. </li></ul>
    • 20. Hydrogen bonds <ul><li>The oxygen atom of a water molecule is the hydrogen bond acceptor for two hydrogen atoms . </li></ul><ul><li>Each O-H group serves as a hydrogen bond donor. </li></ul>
    • 21. 4 Hydrogen bonds <ul><li>Leads to the formation of 4 hydrogen bonds by water </li></ul><ul><li>The tetrahedral structure of the water hydrogen bonds is a consequence of the sp3 hybridization of the oxygen's electrons. </li></ul><ul><li>The two hydrogen bonds between the oxygen and the hydrogen atoms on another water molecule utilize the two partly-negative pairs of unbonded electrons on oxygen. </li></ul>
    • 22. Structure of liquid water <ul><li>The hydrogen bonding pattern of water is more irregular than that of ice. </li></ul><ul><li>The absolute structure of liquid water has not been determined . </li></ul><ul><li>Many theories e.g. Frank and Wen flickering cluster model : as a liquid, water has partly crystalline “clusters” but some “loose molecules” </li></ul>
    • 23. Properties of Water The Strange Liquid
    • 24. Density anomaly <ul><li>Most substances are denser in the solid than in the liquid phase </li></ul><ul><li>The structure of ice at 0 o C is less dense than that of liquid water at 0 o C because ice has a more rigid lattice. </li></ul><ul><li>Density maximum at 4 o C </li></ul><ul><li>Ice forms at surface and floats </li></ul><ul><li>Enormous implications for climate </li></ul>
    • 25. High Specific Heat Capacity <ul><li>Very high energy required to change the temperature of water </li></ul><ul><li>Water is slow to heat and slow to cool </li></ul><ul><li>Warm ocean currents can therefore transport huge amounts of heat </li></ul><ul><li>Gulf Stream transports more heat daily than would be produced by burning global quantity of coal mined annually </li></ul>
    • 26. Latent Heat Capacity <ul><li>Energy to change phase without changing temperature </li></ul><ul><li>When water is heated to 100ºC, is doesn’t all instantly evaporate to steam. A lot of heat has to be supplied to transform all the liquid into vapour. </li></ul><ul><li>When ice is reaches 0ºC, is doesn’t all instantly melt. A lot more heat must be applied to transform all the ice into liquid water </li></ul>
    • 27. Specific Heat and Latent Heat Heat Energy Supplied 100 ºC 0 ºC T ºC Boiling Point Freezing Point Specific Heat of Water Specific Heat of Ice Latent Heat of Water Latent Heat of Ice
    • 28. Phase transitions solid-liquid-gas <ul><li>Boundaries of phases are controlled by temperature and pressure </li></ul><ul><li>Phase diagram plots phases on a graph of temperature and pressure </li></ul>T P
    • 29. Phase diagram of water
    • 30. Triple Point <ul><li>Solid, Liquid and Gas phases can co-exist </li></ul><ul><li>Below Triple Point , solid sublimes to gas </li></ul><ul><li>Gas and Solid extend throughout T and P </li></ul><ul><li>Liquid is a “contigent” state, not always necessary </li></ul>
    • 31. Critical Point <ul><li>Boundary between Liquid and Solid stops at Critical Point </li></ul><ul><li>Supercritical region: gas and liquid behave in same way </li></ul><ul><li>Gas and Liquid are both Fluids phases </li></ul>
    • 32. More anomalous properties <ul><li>Excellent solvent , especially of ionic compounds </li></ul><ul><li>Highly reactive and therefore corrosive </li></ul><ul><li>Viscosity increases with pressure </li></ul><ul><li>High boiling point and freezing point </li></ul><ul><li>Low dissociation, but can act as an Acid or Alkali and is an electrolyte </li></ul>
    • 33. Water as Ice
    • 34. Molecular structure of ice <ul><li>Water molecules in ice form an open hexagonal lattice in which every water molecule is hydrogen bonded to four others. </li></ul><ul><li>The geometric regularity of these hydrogen bonds contributes to the strength of the ice crystal. </li></ul><ul><li>All hydrogen bonds are satisfied in ice. </li></ul>Structure of Ice I “ normal” ice
    • 35. “ Normal” ice <ul><li>Ice I has hexagonal symmetry that we associate with snowflakes </li></ul><ul><li>Dendritic ( branching ) growth from a “seed” particle </li></ul>
    • 36. Many types of ice <ul><li>Under pressure, Ice I can change to other forms e.g. ice II and ice III. </li></ul><ul><li>1998 Ice XII was discovered! </li></ul><ul><li>Some forms are very unstable e.g. ice IV and ice XII </li></ul><ul><li>I-V the hexagonal lattice is buckled </li></ul><ul><li>VI-XII several interlocking lattices </li></ul>
    • 37. “ Weird” ice <ul><li>At ~ 3500 atm, Ice I can change to other forms e.g. ice II and ice III. </li></ul><ul><li>Ice VI will remain solid up to 80ºC, but melts at pressures less than 6500 atm ! </li></ul><ul><li>Ice VII is formed at 22000 atm, is twice as dense as ice I and melts at 100 ºC ! </li></ul><ul><li>Ice IX cannot exist at temperatures above -100 ºC ! </li></ul>
    • 38. Amorphous, glassy ice <ul><li>Low density amophous ice forms by rapid freezing to -140 ºC </li></ul><ul><li>There is no “time” to form the lattice </li></ul><ul><li>Can only exist between -140 ºC and -120 ºC </li></ul><ul><li>Behaves like very viscous liquid </li></ul><ul><li>High density amorphous ice is formed from ice I at 10 000 atm and -196 ºC </li></ul>
    • 39. Supercooled water <ul><li>Liquid water can also be supercooled </li></ul><ul><li>High altitude, low temperatures and pressures e.g. cirrus clouds ~38 ºC </li></ul><ul><li>Solutes also decrease the freezing point, e.g. seawater freezes at – 1.9 ºC </li></ul>
    • 40. Where did the water on Earth come from?
    • 41. Water in the Universe <ul><li>“ Excited” molecules of water radiate MASERS (Microwave Amplified Stimulated Emission of Radiation) </li></ul><ul><li>Water is </li></ul><ul><li>common in </li></ul><ul><li>the Universe </li></ul><ul><li>e.g. Orion’s </li></ul><ul><li>Horse Head </li></ul><ul><li>Nebula </li></ul><ul><li>Townes 1969 </li></ul>
    • 42. Solar Systems <ul><li>Material orbiting stars can form a planetary solar system (such as ours) </li></ul><ul><li>Our solar system consists of </li></ul><ul><ul><li>Inner “rock” planets e.g. Earth and Mars </li></ul></ul><ul><ul><li>Outer “gas” planets e.g. Jupiter and Saturn </li></ul></ul><ul><ul><li>Planetesimals such as asteroids, meteorites and comets that maybe rich in water, CO 2 and NH 3 </li></ul></ul>
    • 43. Our Solar System
    • 44. Water in our Solar System <ul><li>Carbonaceous Chondrites (type of meteorite) contain 20% water as ice or in the structure of consitutent minerals </li></ul><ul><li>Common meterorites (Chondrites) contain 0.1% water </li></ul><ul><li>Comets contain huge amounts of water, typically one thousand trillion kgs! </li></ul>
    • 45. e.g. Halley’s Comet <ul><li>Size 8km x 16km </li></ul><ul><li>Mass 100 trillion Kg </li></ul><ul><li>Mostly ice </li></ul>
    • 46. Origins of Water on Planet Earth <ul><li>Collisions with Planetesimals such as asteroids, meteorites and comets brought water, CO 2 and NH 3 to the Earth </li></ul>
    • 47. Formation of Lithosphere <ul><li>As Earth cooled, a rocky surface, the lithosphere, formed on the molten magma </li></ul>
    • 48. Formation of early Atmosphere <ul><li>Cooling magma released volatiles by degassing to form early atmosphere </li></ul><ul><li>Early atmosphere was mainly CO 2 , N 2 and water vapour </li></ul>
    • 49. Formation of Hydrosphere <ul><li>Between 4.4 and 4.0 billion years ago </li></ul><ul><li>Temperature low enough for condensation of water </li></ul><ul><li>Formation of clouds and rain </li></ul><ul><li>Formation of oceans </li></ul>
    • 50. The Blue Planet
    • 51. Water controls our Planet <ul><li>Geological change : erosion by rivers, glaciers and coastal erosion </li></ul><ul><li>Short term climate : El Niño, North Atlantic Oscillation </li></ul><ul><li>Climate change : Ice-ages </li></ul>El Niño
    • 52. El Niño mechanism http://www.pmel.noaa.gov/tao/elnino/nino-home.html#
    • 53. Some facts and figures… <ul><li>Planet Water would be more appropriate as a name than planet Earth! </li></ul><ul><li>More than 2/3 of planet surface is water </li></ul><ul><li>More than 1/20 of planet surface is ice </li></ul><ul><li>Only tiny proportion, 1/10000, is freshwater </li></ul>
    • 54.  
    • 55. The Hydrological Cycle
    • 56. Hydrological cycle <ul><li>Very dynamic cycling, main mechanisms are evaporation and condensation / precipitation </li></ul><ul><li>Balance between water in 3 states : solid, liquid, gas; ice, water and vapour </li></ul><ul><li>Hydrological cycle regulates and controls many other biogeochemical cycles </li></ul>
    • 57. Water in the Sky… Clouds <ul><li>Volume equal to all the oceans passes through atmosphere ~3100 years </li></ul><ul><li>Atmosphere only contains about 0.001% of total water at any one time as clouds </li></ul><ul><li>Represents only 0.035% of all freshwater </li></ul><ul><li>Equivalent to about 2.5 cm of rain over all surface of globe </li></ul>
    • 58. Formation of Clouds <ul><li>Process of condensation </li></ul><ul><li>Condensation nuclei </li></ul><ul><li>Airborne particles e.g. </li></ul><ul><ul><li>dust, </li></ul></ul><ul><ul><li>soot, </li></ul></ul><ul><ul><li>DMS </li></ul></ul>
    • 59. Dimethyl Sulphide (DMS) <ul><li>Produced by phytoplankton </li></ul><ul><li>In atmosphere forms sulphate </li></ul><ul><li>Coalesces with sodium and magnesium ions from sea-salt </li></ul><ul><li>Forms crystalline particles that are condensation nuclei </li></ul>
    • 60. Clouds <ul><li>Cumulus </li></ul><ul><li>Stratus </li></ul><ul><li>Alto-cumulus </li></ul><ul><li>Alto-stratus </li></ul><ul><li>Cirrus </li></ul><ul><li>Cumulo-nimbus </li></ul>
    • 61. Cumulus <ul><li>low altitude </li></ul><ul><li>formed by convection of air </li></ul><ul><li>“ warm clouds“ mostly above 0ºC </li></ul><ul><li>fluffy and billowing </li></ul>Image ID: wea00079, Historic NWS Collection Photo Date: September 1980 Photographer: Ralph F. Kresge #1126
    • 62. Stratus <ul><li>low altitude, </li></ul><ul><li>formed by convection of air meeting a stable layer </li></ul><ul><li>mostly above 0ºC </li></ul><ul><li>static </li></ul><ul><li>typical of overcast sky </li></ul>Image ID: wea02051, Historic NWS Collection Location: Oahu, Hawaii Photo Date: March, 1976 Photographer: Ralph F. Kresge
    • 63. Alto-cumulus <ul><li>At higher altitudes </li></ul><ul><li>Formed at a lower temperature (0 to -39ºC) </li></ul><ul><li>Also Alto-stratus </li></ul>Image ID: wea00039, Historic NWS Collection Photographer: Ralph F. Kresge #1201
    • 64. Cirrus <ul><li>high altitude </li></ul><ul><li>temperature below -39ºC </li></ul><ul><li>feathery </li></ul>Image ID: wea00062, Historic NWS Collection Location: Looking SSW at Rossmoor, Maryland Photo Date: 10:45 A.M., January 29, 1976 Photographer: Ralph F. Kresge
    • 65. Alto-stratus <ul><li>At higher altitudes </li></ul><ul><li>formed at a lower temperature (0 to -39ºC) </li></ul>
    • 66. Cumulo-nimbus <ul><li>cumulus topped by cirrus </li></ul><ul><li>storm cloud </li></ul>Image ID: wea00094, Historic NWS Collection Location: Mauna Kea, Hawaii Photo Date: February 1976 Photographer: Ralph F. Kresge #0221
    • 67.  
    • 68. Water Vapour and Global Change <ul><li>Water vapour is a greenhouse gas </li></ul><ul><li>Global warning may cause positive feedback : warming puts more water-vapour into atmosphere which causes further warming </li></ul><ul><li>Alternately more water-vapour into atmosphere may cause more, violent precipitation </li></ul><ul><li>Also consider albedo effect versus greenhouse effect </li></ul>
    • 69. Evaporation and Transpiration <ul><li>~ 875 cubic km of water evaporate from the oceans every day </li></ul><ul><li>Equivalent to about 1m of the oceans annually </li></ul><ul><li>~ 160 cubic km of water evaporate from land and plants ( transpiration ) every day </li></ul>
    • 70.  
    • 71. Residence times <ul><li>Biospheric water </li></ul><ul><li>Atmospheric water </li></ul><ul><li>River channels </li></ul><ul><li>Swamps </li></ul><ul><li>Lakes and reservoirs </li></ul><ul><li>Soil moisture </li></ul><ul><li>Ice caps and glaciers </li></ul><ul><li>Ocean and seas </li></ul><ul><li>Groundwater </li></ul><ul><li>1 week </li></ul><ul><li>1.5 weeks </li></ul><ul><li>2 weeks </li></ul><ul><li>1-10 years </li></ul><ul><li>10 years </li></ul><ul><li>2 weeks-1 year </li></ul><ul><li>1000-100 000 years </li></ul><ul><li>4000 years </li></ul><ul><li>2 weeks-10 000 years </li></ul>
    • 72. Runoff <ul><li>Precipitation on land - Evaporation on land = Runoff </li></ul><ul><li>~100 cubic km per day </li></ul><ul><li>Deserts: precipitation = evaporation </li></ul><ul><li>Amazon: </li></ul><ul><ul><li>precipitation >> evaporation </li></ul></ul><ul><ul><li>1/5 of freshwater input into oceans </li></ul></ul>
    • 73.  
    • 74. Oceans and Seas are all interconnected basins <ul><li>Atlantic </li></ul><ul><li>Pacific </li></ul><ul><li>Indian </li></ul><ul><li>Southern (Antarctic) </li></ul><ul><li>2/3 in South Hemisphere </li></ul><ul><li>Mediterranean Sea </li></ul><ul><li>Black Sea </li></ul><ul><li>North Sea </li></ul><ul><li>Red Sea </li></ul><ul><li>Arabian Sea </li></ul><ul><li>East and South China Seas </li></ul><ul><li>Arctic </li></ul>
    • 75. Oceans … a little oceanography <ul><li>½ of the globe is 3 000-6 000m deep! </li></ul><ul><li>Ocean trenches reach 11 000m, mountains only 8000m </li></ul><ul><li>Mid-ocean ridges are the greatest mountain chains </li></ul>
    • 76. Topography of Ocean Basins
    • 77. Surface Currents <ul><li>wind </li></ul><ul><li>rotation (gyres) </li></ul><ul><li>N. Equatorial </li></ul><ul><li>S. Equatorial </li></ul><ul><li>West wind drift </li></ul><ul><li>Norway </li></ul><ul><li>North Atlantic </li></ul><ul><li>Canary </li></ul><ul><li>Brazil </li></ul><ul><li>Agulhas </li></ul><ul><li>Alaska </li></ul><ul><li>Oyashio </li></ul><ul><li>Kuroshio </li></ul><ul><li>Peru </li></ul>
    • 78. Global Ocean Surface Currents http://web.uvic.ca/~rdewey/eos110/webimages.html
    • 79. Deep Circulation, Global Conveyor <ul><li>thermohaline </li></ul><ul><li>Density driven </li></ul><ul><li>(T and S) </li></ul>http://web.uvic.ca/~rdewey/eos110/webimages.html
    • 80. Tidal currents <ul><li>Up to 14m! </li></ul><ul><li>Gravitational pull (moon + sun) </li></ul><ul><li>24 h and 50 min cycle </li></ul><ul><li>Semi diurnal (High-Low-High-Low) </li></ul><ul><li>Lunar cycle (Spring-Neap-Spring-Neap) </li></ul>
    • 81.  
    • 82.  
    • 83.  
    • 84. River basins
    • 85.  
    • 86. Nile <ul><ul><li>Length: 6650 km </li></ul></ul><ul><ul><li>Catchment: ~ 3 million km 2 </li></ul></ul>
    • 87. Amazon <ul><li>Length: 6450 km </li></ul><ul><li>Catchment: </li></ul><ul><li>~ 7 million km 2 </li></ul>
    • 88. Volume of water transported <ul><li>Different climatic regions ( e.g. Nile and Amazon) </li></ul><ul><li>Dams </li></ul><ul><ul><li>Aswan: Lake Nasser 500km, +900 000 acres of arable land, ¼ of Egypt’s power </li></ul></ul><ul><ul><li>Itaipu </li></ul></ul><ul><ul><li>Three gorges estimate 18200 megawatts, reservoir ~660 km long </li></ul></ul>
    • 89. Aswan Dam Lake Nasser
    • 90.  
    • 91.  
    • 92. River basins <ul><li>Different geomorphology </li></ul><ul><li>Different size of flood plains </li></ul><ul><li>Erosion of rocks </li></ul><ul><li>Sediment transport </li></ul><ul><li>Dams </li></ul>
    • 93.  
    • 94. Groundwater <ul><li>Some rain permeates through ground ( aquifer ) until it reaches impermeable bedrock or clay. </li></ul><ul><li>Upper limit is water table </li></ul>
    • 95. Groundwater quality <ul><li>Depends on rocks of aquifer </li></ul><ul><ul><li>Hard water: chalk and limestone </li></ul></ul><ul><ul><li>Soft water: slate and granite </li></ul></ul><ul><li>Mineral water: high concentration of dissolved minerals. Maybe volcanically heated, thermal. </li></ul><ul><li>Maybe contaminated by pesticides, fertilizers from agriculture or leachates from landfills </li></ul>
    • 96. Characterization of Water by Mineral Composition … a little hydrochemistry
    • 97.  
    • 98.  
    • 99. Ca 2+ <ul><li>Rain is acidic (~pH 5.5) </li></ul><ul><li>Dissolves carboniferous rocks Ca CO 3 </li></ul><ul><li>Temperature is important ( solubility decreases with increasing temperature) </li></ul><ul><li>K= [Ca 2+ ] [CO 3 2- ] = 10 -8,3 </li></ul><ul><li> (1:1) </li></ul><ul><li>P CO2 in soil < a P CO2 in the atmos ( P CO2 in soil ≈ 3 x 10 -4 atm.) </li></ul><ul><li>K= [Ca 2+ ] [HCO 3 - ] 2 = 10 -5,8 P CO2 </li></ul><ul><li> (1:2) </li></ul>
    • 100. Bicarbonate HCO 3 - <ul><li>H 2 CO 3 Equilibrium </li></ul><ul><li>Controlled by pH </li></ul><ul><li>Normally HCO 3 - is dominant specie </li></ul><ul><li>Determine alkalinity of water </li></ul>
    • 101. How do we represent the composition of water? <ul><li>Bar charts or Collins diagram </li></ul><ul><li>Pie charts </li></ul><ul><li>Kite or stiff diagrams </li></ul><ul><li>Radial diagrams </li></ul><ul><li>Triangular or Piper diagrams </li></ul><ul><li>Semi-logarithmic or Schoeller diagrams </li></ul>
    • 102.  
    • 103.  
    • 104.  
    • 105.  
    • 106.  
    • 107.  
    • 108.  
    • 109.  
    • 110.  
    • 111.  
    • 112.  
    • 113.  
    • 114.  
    • 115.  
    • 116.  
    • 117. Exploitation of aquifers <ul><li>Over exploitation may cause land subsidence e.g. London and Mexico </li></ul><ul><li>In coastal regions, seawater intrusion </li></ul>
    • 118. Ice… the cryosphere
    • 119. Ice Ages <ul><li>Thought to be caused by astronomical variations called Milankovitch cycles </li></ul><ul><li>Obliquity </li></ul><ul><li>Precession </li></ul><ul><li>Eccentricity </li></ul>
    • 120. Milankovitch cycles <ul><li>The ice ages were due to the so-called Milankovitch cycles, that is a combination of the Earths eccentricity (the difference in distance to the sun throughout the year), the tilt of the Earth relative to the Earth-sun plane (difference summer – winter) and the time of the year when the Earth is closest to the sun. </li></ul>Milutin Milankovitch
    • 121. The 3 Milankovitch cycles <ul><li>Precession : Orientation of the rotation axis with respect to Sun, 20 000 year cycle </li></ul><ul><li>Obliquity : tilt of rotation axis currently at 23.5º to plane of orbit, 40 000 year cycle </li></ul><ul><li>Eccentricity : elliptical shape of orbit, 100 000 year cycle </li></ul>
    • 122. Precession <ul><li>Orientation of the rotation axis with respect to Sun 20 000 year cycle </li></ul>
    • 123. Obliquity : tilt of rotation axis currently at 23.5º to plane of orbit 40 000 year cycle Eccentricity : elliptical shape of orbit, 100 000 year cycle
    • 124. Last Ice Age <ul><li>18 000 years ago </li></ul><ul><li>Sea-level 120 m below present </li></ul><ul><li>Water bound up as continental icesheets </li></ul><ul><ul><li>Laurentide ice sheet of N.America </li></ul></ul><ul><ul><li>Fennoscandinavian ice sheet of N.Europe </li></ul></ul>
    • 125. Present Occurrence of Ice <ul><li>Water bound up in ice as: </li></ul><ul><li>Continental icesheets </li></ul><ul><li>Sea ice: iceshelves or pack-ice and icebergs </li></ul><ul><li>Mountain glaciers </li></ul>
    • 126. Present cryosphere <ul><li>Includes permafrost in tundra and snow at high altitudes </li></ul><ul><li>2% of total water volume </li></ul><ul><li>¾ of Earth’s freshwater </li></ul><ul><li>5.7% of surface of globe (seasonal fluctuations) </li></ul><ul><li>Most ice is stored in Antarctica </li></ul><ul><li>High albedo </li></ul>
    • 127. Antarctic Icesheets and ice-shelves <ul><li>Mean thickness 2100m </li></ul><ul><li>Maximum thickness 4800m </li></ul><ul><li>East Antarctic icesheet is larger than West Antarctic icesheet </li></ul><ul><li>East Antarctic icesheet on bedrock above sea level </li></ul><ul><li>West Antarctic icesheet on rock below sealevel </li></ul><ul><li>Also Ross and Ronne ice-shelves over sea </li></ul>
    • 128. Ice cores <ul><li>Icesheets are maintained by application of new coats of ice compressing previous layers </li></ul><ul><li>East Antarctic icesheet at 3000m is 250 000 years old </li></ul><ul><li>Analysis of cores of polar ice reveal previous composition of atmosphere </li></ul>
    • 129. Greenland Plateau and Vostok, Antarctica Ice plateau on Greenland Vostok
    • 130. Antarctic temperatures – during the last 400 000 years
    • 131. Last four ice ages recorded in Antarctica http://www.grida.no/climate/ipcc_tar/wg1/fig2-22.htm                                                                                            
    • 132. Icestreams and Icebergs <ul><li>Melting of icesheets </li></ul><ul><li>can form icestreams </li></ul><ul><li>or icebergs </li></ul>
    • 133. Mountain Glaciers <ul><li>Frozen rivers </li></ul><ul><li>Flow slowly down with gravity </li></ul>
    • 134. Glacial features <ul><li>U-shaped valleys </li></ul><ul><li>Truncated spurs </li></ul><ul><li>Hanging valleys </li></ul><ul><li>Moraines </li></ul><ul><li>Fjords </li></ul>
    • 135. Glacier melt water <ul><li>Discharged into rivers, or directly into sea at high latitudes </li></ul>
    • 136. Cryosphere and global change <ul><li>Seasonal glacial retreat </li></ul><ul><li>Retreat over several years maybe symptom of global change and warming </li></ul><ul><li>Increase number of icebergs in N. Atlantic </li></ul><ul><li>Decrease thickness of pack-ice in Arctic </li></ul>
    • 137. Glacier retreat
    • 138.  
    • 139. The Nigard valley. The picture shows the retreat of the glacier. Photo: Bjørn Wold, NVE.
    • 140. Changes in sea-ice thickness in the Arctic United Nations Environment Programme (UNEP) –Grid Arendal Overall change -1.3 m (40%) Positions with comparison USS Archerfish Measurements ’60s and ’90s
    • 141. The destructive forces of Water
    • 142. Floods <ul><li>River floods and ice jams </li></ul><ul><li>Coastal floods </li></ul><ul><li>Hurricanes and cyclones </li></ul><ul><li>Tsunamis </li></ul>
    • 143. Floods and mortalities <ul><li>40% of deaths from natural disasters are due to floods </li></ul><ul><li>1965-85 half of Federal disasters in USA due to floods </li></ul><ul><li>Hurricane Agnes: 3.5 billion US, 120 lives </li></ul><ul><li>In USA, floods cost 2-4 Billion US dollars annually and about 200 lives </li></ul><ul><li>Figures much higher in some other parts of world </li></ul>
    • 144. River floods <ul><li>1992 Pakistan and India: 2000 lives </li></ul><ul><li>China: 2297 BC </li></ul><ul><li>1332 AD 7 000 000 lives </li></ul><ul><li>1887 6 000 000 lives </li></ul><ul><li>Bangladesh: Ganges, Bramaputra and Megna rivers, low elevation frequent floods </li></ul><ul><li>Egypt: historical flooding of Nile </li></ul>
    • 145. <ul><li>1993 Mississipi flood: 15 billion U$ 487 lives </li></ul>
    • 146. Ice jams and melts <ul><li>1936 New England: 107 lives </li></ul>
    • 147. Coastal floods <ul><li>High tides and storm surges 1953 North Sea </li></ul><ul><li>Tropical cyclones </li></ul><ul><ul><li>Hurricanes (Caribbean) </li></ul></ul><ul><ul><li>Typhoons (W. Pacific) </li></ul></ul><ul><li>Tsunami </li></ul>
    • 148. Hurricanes <ul><li>1900 Galveston 10 000 lives </li></ul><ul><li>Hugo 1989 and Andrew 1992 30 billion US dollars </li></ul><ul><li>Formed over warm seas </li></ul>
    • 149. Hurricane Hugo http://www.photolib.noaa.gov/historic/nws/hugo1.html Digitized Charleston WSR-57 radar image of Hugo with superimposed winds Real-time winds measured onboard NOAA research aircraft flying into Hugo Wind velocity transmitted to NHC through a satellite link as eyewall hit coast Sustained winds of 155 mph at 10,000 feet and 135 mph at surface Higher gusts were estimated in area of landfall Image ID: wea00455, Historic NWS Collection Photographer: Dr. Frank Marks, AOML Hurricane Research Division
    • 150. Hurricane Andrew http://www.photolib.noaa.gov/historic/nws/andy1.html Hurricane Andrew - visible satellite image taken by METEOSAT 3 This picture depicts Andrew during period of maximum intensity over Bahamas August 23,1992                             Image ID: wea00520, Historic NWS Collection
    • 151. Hurricane Katrina, USA <ul><li>August 2005 </li></ul><ul><li>Levee holding back lake Pontchartrain breeched </li></ul><ul><li>New Orleans flooded </li></ul><ul><li>Science , Vol 309, Issue 5741, 1656-1659 , 9 September 2005 </li></ul><ul><li>Scientists' Fears Come True as Hurricane Floods New Orleans </li></ul><ul><li>John Travis </li></ul><ul><li>Katrina held few surprises for hurricane experts, who have repeatedly warned about the potential catastrophic consequences for New Orleans if such a storm were to make landfall nearby. </li></ul>
    • 152. Lake Pontchartrain and New Orleans
    • 153. New Orleans flooded
    • 154. Breeched Levee
    • 155. Breeched Levee
    • 156. Loss of Wetlands An ambitious $14 billion plan known as Coast 2050 attempts to protect more than 10,000 square kilometers of Louisiana's wetlands, which are disappearing at a rate of up to 90 square kilometers per year, one of the highest rates of land loss in the world. But a number of unanswered scientific questions swirl around the plan. And it could run afoul of powerful interests in the shipping, petroleum, and fishing industries. Louisiana's Vanishing Wetlands: Going, Going ... Joel Bourne Science 2000 290: 456. (in Letters) [Full Text]
    • 157. Altered Delta
    • 158. Tropical cyclones in Indian Ocean <ul><li>Bangladesh: large areas only 3m altitude </li></ul><ul><li>1737: 1 000 000 lives </li></ul><ul><li>1876 </li></ul><ul><li>1970: 200 000 lives </li></ul><ul><li>1991: 100 000 lives </li></ul>
    • 159. The 1998 flood in Bangladesh
    • 160. Floods in Bangladesh
    • 161. Tsunami <ul><li>caused by: </li></ul><ul><li>Earthquakes and Sea-floor displacement : e.g. 26 December 2004 Aceh </li></ul><ul><li>Landslides : e.g. Alaska 1957 </li></ul><ul><li>Volcanoes : e.g. Krakatau 1883 </li></ul>
    • 162. Tsunami <ul><li>1792 Japan: 15 000 lives </li></ul><ul><li>1896 Japan: 27 000 lives </li></ul><ul><li>1957 Alaska: wave 60m devasted trees upland to 530m </li></ul><ul><li>1883 Krakatau: 36 000 lives </li></ul><ul><li>2004 Aceh and Indian Ocean: 300 000+ lives </li></ul>
    • 163. 26 December 2004 off Aceh, Indonesia
    • 164. Indonesia: lhoknga_iko_2004364
    • 165. Sri Lanka_qbd_2004361
    • 166. Sea Level Change <ul><li>Linked to climate change and ice ages </li></ul><ul><li>Last ice age, sea level 120m below present </li></ul><ul><li>Still enough ice in ice-sheets and glaciers to raise sea level by 66m! </li></ul><ul><li>A rise of only 5m would be catastrophic for Pacific Islands, Bangladesh, the Netherlands, Vietnam, Florida </li></ul><ul><li>Current estimates vary 20cm-1m by 2100 </li></ul><ul><li>Thermal expansion is main cause of rise </li></ul>
    • 167. Water and Society <ul><li>Religions: water Gods, creation, floods </li></ul><ul><li>Ceremonies: baptism, cleansing before worship, sacred and holy water </li></ul>
    • 168. Ancient Civilizations and Waterways <ul><li>Mesopotamia </li></ul><ul><li>India </li></ul><ul><li>China </li></ul><ul><li>Egypt </li></ul><ul><li>Tigris and Euphates </li></ul><ul><li>Ganges </li></ul><ul><li>Yellow River </li></ul><ul><li>Nile </li></ul>
    • 169. Water and Health <ul><li>Cholera </li></ul><ul><li>Typhoid </li></ul><ul><li>Dysentry </li></ul><ul><li>Hepatitis A </li></ul><ul><li>Maleria and other mosquito-borne diseases (Dengue, West Nile fever) </li></ul>
    • 170. Water as a Resource
    • 171. The uses of water <ul><li>Domestic </li></ul><ul><ul><li>Drinking </li></ul></ul><ul><ul><li>Hygiene </li></ul></ul><ul><ul><li>Cleaning </li></ul></ul><ul><li>Industrial </li></ul><ul><ul><li>Heavy industry </li></ul></ul><ul><ul><li>Light industry </li></ul></ul><ul><ul><li>Food industry </li></ul></ul><ul><ul><li>Power generation </li></ul></ul><ul><li>Recreation </li></ul><ul><ul><li>Bathing </li></ul></ul><ul><ul><li>Sailing </li></ul></ul><ul><li>Agricultural </li></ul><ul><ul><li>Irrigation </li></ul></ul><ul><ul><li>Aquaculture </li></ul></ul><ul><ul><li>Fisheries </li></ul></ul>
    • 172. Water and Energy <ul><li>Hydroelectric power </li></ul><ul><li>Water as a “fuel” by splitting </li></ul><ul><ul><li>Electolysis, </li></ul></ul><ul><ul><li>Photolysis, </li></ul></ul><ul><ul><li>Photosynthesis </li></ul></ul><ul><ul><li>H-O fuel cells </li></ul></ul><ul><li>Tidal mills and barrages </li></ul><ul><li>Ocean currents </li></ul>
    • 173. Water as a scarce resource <ul><li>Uneven distribution of rainfall </li></ul>
    • 174. <ul><li>2/3 of rainfall flows to sea </li></ul>
    • 175. Global use of water <ul><li>Tripled between 1950-90 </li></ul><ul><li>Half of available runoff used by 1996 </li></ul>
    • 176.  
    • 177.  
    • 178.  
    • 179. Use of water by sector differs
    • 180. Use of domestic water differs… <ul><li>Uganda and Burundi 5-25 Liters per day per person </li></ul><ul><li>Europe 100 to 260 liters per day per person </li></ul><ul><li>USA 400-500 liters per day </li></ul><ul><li>Same water quality for brushing teeth, flushing toilet and washing car </li></ul>
    • 181. Agriculture <ul><li>Most increases in crop production due to irrigation </li></ul>
    • 182.  
    • 183. Increasing water stress
    • 184. Abuses of water <ul><li>Wastage in distribution, leaks e.g. UK </li></ul><ul><li>Inefficient irrigation e.g. Middle East </li></ul><ul><li>Over extraction and salinization e.g. Mediterranean </li></ul><ul><li>Desertification e.g. MidWest dust bowl Sahel </li></ul><ul><li>Pollution </li></ul>
    • 185. Pollution <ul><li>Drinking water can be affected </li></ul><ul><li>Pesticides, Herbicides, Fungicides </li></ul><ul><li>Fertilizers </li></ul><ul><li>Industrial PCBs (paints, plastics, adhesives) </li></ul><ul><li>Metals from mines and industry </li></ul><ul><li>Hydrocarbons and Crude oil </li></ul><ul><li>Sewage pathogens </li></ul><ul><li>Organic Matter </li></ul><ul><li>Detergents </li></ul><ul><li>Acid rain </li></ul>
    • 186. New or recycled water <ul><li>Recycle grey water for agriculture </li></ul><ul><li>Desalination </li></ul><ul><li>Shipping water from countries where it is abundant e.g. Alaska to China, Norway to S. Europe </li></ul>
    • 187. The Global International Waters Assessment <ul><li>GIWA </li></ul><ul><li>Comprehensive strategic assessment </li></ul><ul><li>Designed to identify priorities for remedial and mitigatory actions in international waters. </li></ul>
    • 188. GIWA's assessment tools Incorporate 5 major environmental concerns and application of the DPSIR framework.
    • 189. DPSIR framework <ul><li>Driving forces </li></ul><ul><li>Pressures </li></ul><ul><li>Impacts </li></ul><ul><li>State </li></ul><ul><li>Responses </li></ul>
    • 190. <ul><li>Black Sea, </li></ul><ul><li>Amazon, </li></ul><ul><li>Gr. Barrier Reef, </li></ul><ul><li>Agulhas Current </li></ul>GIWA Case Studies
    • 191. Water and Life
    • 192. Carbon life-forms… <ul><li>All known life-forms are C-based </li></ul><ul><li>Many other elements essential for organic (C) life, e.g. N, P </li></ul><ul><li>All known life-forms also require water </li></ul><ul><li>Many organisms more than 70% water, some more than 90% </li></ul><ul><li>Humans require min. 1 liter per day </li></ul>
    • 193. The Beginning of Life <ul><li>~3.8 billion years ago. </li></ul><ul><li>Atmosphere contained N, CO 2 and water as well as H 2 S and CH 4 from volcanoes </li></ul><ul><li>Very little oxygen, anoxic, reducing </li></ul><ul><li>Current scientific theory: first life-forms were aquatic in shallow lagoons, or hydrothermal vents </li></ul>
    • 194. Early life forms <ul><li>Oldest fossils: </li></ul><ul><ul><li>Rocks in SW Greenland </li></ul></ul><ul><ul><li>Australian Stromatolites 3.5 billion years </li></ul></ul><ul><li>First life-forms: </li></ul><ul><ul><li>anaerobic heterotrophs using simple organic molecules available by glycolysis or fermentation </li></ul></ul><ul><ul><li>chemosynthetic autotrophs using H 2 S </li></ul></ul><ul><ul><li>photosynthetic autotrophs using H 2 S </li></ul></ul>
    • 195. Oxygen and early life-forms <ul><li>Oxygen produced by one type of photosynthesis </li></ul><ul><li>Uses H 2 O as a proton donor instead of H 2 S </li></ul><ul><li>Oxygen is oxidating, reactive, corrosive gas </li></ul><ul><li>Oxygen is TOXIC to aerobic life-forms </li></ul><ul><li>Oxygen accumulated slowly in the atmosphere </li></ul><ul><li>Permited the evolution of facultative anerobes and aerobic heterotrophs and </li></ul><ul><li>Aerobic respiration is far more energetic than fermentation </li></ul>
    • 196. Aquatic life-forms <ul><li>Aquatic life-forms usually restricted in their distribution to fresh or salt water </li></ul><ul><li>Osmotic pressure one of the colligative properties of water </li></ul><ul><li>Special adaptations needed for estuarine organisms to survive salinity changes and migratory organisms such as eels and salmon </li></ul>
    • 197. Terrestrial plant-forms <ul><li>Photosynthetic cyanobacteria probably first organisms to survive on land </li></ul><ul><li>460 million years ago bryophytes (mosses and liverworts) and ferns </li></ul><ul><li>325 million years ago tropical forests </li></ul><ul><li>Vascular plants “higher” supported by water-based fluids xylem and phloem </li></ul><ul><li>Depend on properties of water such as osmosis and capillary action </li></ul><ul><li>Transpiration from plants is important in Hydrological cycle </li></ul>
    • 198. Terrestrial animal-forms <ul><li>Many land-based animals need special adaptations to live out of water such e.g. </li></ul><ul><ul><li>Molluscs such as gastropod snails </li></ul></ul><ul><ul><li>Crustacea such as crabs </li></ul></ul><ul><li>Amphibians first vertebrates on land </li></ul><ul><li>Animals also have many water based fluids such as cytoplasm, blood plasma and lymph </li></ul>

    ×