Surface Analysis

  • 2,596 views
Uploaded on

Phân tích hình thái và nguyên tố của vật liệu màng

Phân tích hình thái và nguyên tố của vật liệu màng

More in: Technology
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads

Views

Total Views
2,596
On Slideshare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
89
Comments
0
Likes
2

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. LEDN-02 Analysis Techniques Sample Probe Response Modified Probe Probe : photo Response : photo electron electron ion ion phonon phonon
  • 2. Analysis Techniques phonon photo photo XRF, TXRF, FTIR, Raman electron electron ion ion phonon SIMS, RBS , ISS, GDMS ESCA EDS PIXE, GDOS SEM, TEM, AES, EELS LAMMA LEDN-03 Scanning Acoustic Microscopy
  • 3. LEDN-004 Analysis Techniques Elemental Molecular Surface ( <10 Å) Thin film ( <100 Å - 1  m) Bulk ( > 10  m) Types of information provided by chemical analysis
  • 4. LEDN-005 Surface and Thin film Analysis Surface Thin Film Elemental Molecular TXRF EDS RBS AES ESCA SIMS
  • 5. 100% 100 ppm 1% 1 ppm XRF ESCA AES RBS SIMS EDX 100Å 10 µm 0.1 µm 1 µm 1 µm 0.1 µm 10 µm 100 µm 1 mm VD D E SENSITIVITY SPATIAL RESOLUTION QUANTITATION DEPTH RESOLUTION LEDN-006 SIMS vs. Other Techniques
  • 6. LEDN-07 Analysis Principle Excitation Photoelectron E b = h  -E k -  Relaxtation ESCA EDS, XRF AES Auger electron KL 1 L 2,3 K (1s) L 1 (2s) L 2,3 (2s) Atom Ion e- h  h 
  • 7. LEDN-08 Analysis Principle X-ray fluorescence (surface) Incident X-rays TRXF Depth information determined either by excitation depth or by escape depth 10-100 Å electron escape depth 1  m Electron excitation depth Auger electrons (surface) X-ray fluorescence Primary Electrons 10-100 Å electron escape depth 100-1000  m X-ray excitation depth photoelectrons (surface) X-ray fluorescence Incident X-rays
  • 8. LEDN-09 Absorbed molecules Sputtered atoms SIMS Principle Sputtering event + + + Primary ions (~10 keV) Sample atoms + + - + + Secondary ions Mixing range (~100 Å) Escape range (~10 Å) Desorbed molecular ions
  • 9. LEDN-10 SIMS Technique Schema ION SOURCE Sample MASS SPECTROMETER DETECTOR MASS SPECTRUM  m DEPTH PROFILE X-Y IMAGE VACCUM m/q
  • 10. Magnetic sector Quadrupole Time of Flight LEDN-11 SIMS Instrument Type r = k/B(m/q) 1/2 M-  M M M+  M Vo(t) = Vc+Vs cos  t t-  t ~ M-  M t ~ M t+  t ~ M+  M ion pulse Detection & Registration m/q ~ B m/q ~ V(f) m/q ~ t
  • 11.  << A  = A Static SIMS Dynamic SIMS Primary ion dose <1E12 ions/cm2 >1E12 ions/cm2 Information Chemical Elemental Analysis Only surface Depth profile Instrument TOF & Quad Magnetic & Quad Ion damage section,  Desorption area, D Bombarded surface, A LEDN-12 Dynamic vs. Static SIMS primary ion ion: elementa l information ion: molecular information
  • 12. LEDN-13 Comparison of SIMS Instruments Magnetic Sector Quadrupole Time of Flight Transmission High (~10 -1 ) Low (~10 -3 ) High (~10 -1 ) Mass range Low (< 500) Low (< 600) Unlimited Mass resolution High ~ 10000 Low ~ 500 High ~ 10000 Detection speed Low High Quasi-parallel Charge compensation Difficult Easy Easy Analysis modes Bulk analysis Depth profiling (100Å-100  m) Imaging Bulk analysis Depth profiling (0Å-10  m) Imaging Surface Analysis Depth profiling (0Å-1  m) Imaging
  • 13. Analytical Condition LEDN-14 Oxygen bombardment & Positive ions Cs bombardment & Negative ions Cs bombardment & Oxygen bombardment
  • 14. LEDN-15 Detection Limits (atoms/cm3) in InP, GaAs, GaN For electropositive elements SIMS Detection Limit
  • 15. LEDN-16 Detection Limits (atoms/cm3) in GaAs,InP and GaN For electronegative elements SIMS Detection Limit
  • 16. Depth (  m) 1E13 at/cm3 LEDN-17 High Mass Resolution Analysis for P in Si High Sensitivity Concentration(at/cm3) P implantation in Si (2E12 atoms/cm2, 300 keV)
  • 17. LEDN-18 Depth profiling of Multi-Quantum wells InGaAsP/InGaAs SIMS Depth Resolution Lz = 110 Å Lz = 125 Å
  • 18. SiC fiber in a Ti matrix (V-doped) LEDN-19 Ti C Si V 50  m Ga + primary ion (30 keV, 50 pA) Ti + : 10s; Si + : 200s; V + : 100s; C + : 200s SIMS Image Analysis
  • 19. SIMS Analysis for GaN LEDs LEDN-20
    • Enhance production yield
    Wafer Control
    • LED wafers
    • Test wafers
    • Purity control (C,H,O,metals)
    • Doping control (Si, Mg)
    • Layer thickness (Growth rate)
    • Interface quality
    • Film composition (AlGaN,InGaN)
    SIMS analysis Calibration & Optimization of Growth GaN Epitaxy Growth Failure analysis Reverse engineering LED dies
    • Reduce R&D cycle time
  • 20. SIMS for AlInGaP LED LEDN-21 Depth (micron) Concentration (atoms/cm 3 ) AlInGaP
  • 21. LEDN-22 SIMS for GaN LED Depth (micron) Concentration (atoms/cm 3 ) InGaN
  • 22. SIMS for AlInGaP LD LEDN-23 Depth (micron) Concentration (atoms/cm 3 ) AlInGaP
  • 23. SIMS for AlGaAs VCSEL LEDN-24 Depth (micron) Concentration (atoms/cm 3 ) VCSEL
  • 24. SIMS for LED dies LEDN-25 GaN LED die SIMS craters AlInGaP LED die SIMS craters
    • Doping concentration and distribution
    • Undesirable Impurities
    • Layer structure control
    Failure analysis
    • Epi-layer structure
    • p- and n-type metal stacks
    • Passivation layers
    Reverse engineering
  • 25. PL on the beveled surface SIMS profile Comparison between PL and SIMS LEDN-26 Composition Analysis by SIMS Al x Ga 1-x As composition by MCs + technique A B C D
  • 26. Composition Analysis by Auger LEDN-27 Depth profiling of the top layers of GaN die