Tablaperiodica2
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share

Tablaperiodica2

  • 2,427 views
Uploaded on

tabla periódica y propiedades

tabla periódica y propiedades

More in: Education
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads

Views

Total Views
2,427
On Slideshare
830
From Embeds
1,597
Number of Embeds
2

Actions

Shares
Downloads
16
Comments
0
Likes
1

Embeds 1,597

http://aulavirtual2.educa.madrid.org 1,193
http://www.abalorios.us 404

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. LA TABLA PERIÓDICA 2ºbachillerato QUÍMICA Carmen Peña IES.Altaír Getafe
  • 2. A lo largo de la historia, los químicos han intentado ordenar los elementos de forma agrupada, de tal manera que aquellos que posean propiedades similares estén juntos. El resultado final el sistema periódico Los elementos están colocados por orden creciente de su número atómico (Z) La utilidad del sistema periódico reside en que los elementos de un mismo grupo poseen propiedades químicas similares GRUPOS a las columnas de la tabla PERÍODOS a las filas de la tabla Se denominan
  • 3. GRUPOS PERÍODOS
  • 4. ESPECIES CON CARGA ELÉCTRICA. IONES. Si un átomo neutro gana o pierde electrones, se convierte en una especie cargada, denominada ion Si gana electrones , hay exceso de éstos, el ion será negativo y se denomina anión Si pierde electrones , hay defecto de éstos, el ión será positivo y se denomina catión Los elementos químicos se pueden clasificar, según su facilidad para perder o ganar electrones Metales No metales Semimetales Gases nobles Tipo de elemento Ejemplo Facilidad para formar iones Li, Be, Re, Ag O, F, I, P Si, Ge He, Ne, Ar Forman fácilmente iones positivos Forman fácilmente iones negativos Forman con dificultad iones positivos No forman iones
  • 5. Los elementos de un mismo grupo, tienen propiedades químicas semejantes, ya que tienen el mismo número de electrones en su capa de valencia (última capa electrónica) y están distribuidos en orbitales del mismo tipo Por ejemplo, los elementos del grupo 17: Estos hechos sugieren que las propiedades químicas de un elemento están relacionadas con la configuración electrónica de su capa de valencia Elemento Configuración más externa Configuración electrónica Flúor Cloro Bromo Yodo 1s 2 2s 2 2p 5 1s 2 2s 2 2p 6 3s 2 3p 5 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 5 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5p 5 ns 2 np 5
  • 6. A) Elementos representativos B) Metales de transición  Su electrón diferenciador se aloja en un orbital s o un orbital p  La configuración electrónica de su capa de valencia es: n s x (x =1, 2) o n s 2 n p x (x= 1, 2, ..., 6)  Los elementos representativos constituyen los grupos 1, 2, 13, 14, 15, 16, 17 y 18 del sistema periódico  Su electrón diferenciador se aloja en un orbital d  La configuración electrónica de su capa de valencia es: (n-1) d x n s 2 (x= 1, 2, ..., 10)  Los metales de transición constituyen los grupos del 3 al 12 del sistema periódico Se distinguen varios bloques caracterizados por una configuración electrónica típica de la capa de valencia
  • 7. C) Metales de transición interna Excepciones  El hidrógeno de configuración 1s 1 no tiene un sitio definido dentro de los bloques  Por su comportamiento químico diferente, los elementos del grupo 12 (Zn, Cd, Hg), cuya capa de valencia tiene una configuración (n-1) d 10 n s 2 , no se consideran elementos de transición debido a su comportamiento químico  Su electrón diferenciador se aloja en un orbital f  La configuración electrónica de su capa de valencia es: (n-2) f x (n-1) d 0 n s 2 (x= 1, 2, ..., 14)
  • 8. Los bloques del Sistema Periódico se ubican de la siguiente forma
  • 9. EL TAMAÑO ATÓMICO. A continuación se muestra con el tamaño relativo de los átomos de los elementos representativos. Los radios están expresados en nm (1 nm = 10 -9 m) Los radios de los átomos varían en función de que se encuentren en estado gaseoso o unidos mediante enlaces iónico, covalente o metálico Los átomos e iones no tienen un tamaño definido, pues sus orbitales no ocupan una región del espacio con límites determinados. Sin embargo, se acepta un tamaño de orbitales que incluya el 90% de la probabilidad de encontrar al electrón en su interior, y una forma esférica para todo el átomo.
  • 10.
    • En un grupo: el tamaño atómico aumenta al descender en un grupo
    • Efecto de contracción: Al descender en el grupo aumenta el número atómico y, por tanto, la carga nuclear. Los electrones son atraídos con más fuerza y por consiguiente disminuye el tamaño
    •  Efecto de apantallamiento: Al descender en el grupo, aumentan el número de capas electrónicas, con lo que el tamaño aumenta.
    • Este factor prevalece sobre el anterior
    • En un período: el tamaño atómico disminuye al avanzar en un período
    •  Al aumentar el número de electrones en la misma capa y aumentar la carga nuclear (efecto de apantallamiento) los electrones se acercan más al núcleo
    Dentro de cada período, los átomos de los metales alcalinos son los más grandes . Los de menor volumen son los de transición y los del grupo 13
  • 11.
    • En iones positivos (cationes): el tamaño del catión es más pequeño que el del átomo neutro ya que al perder electrones de la capa más externa, los que quedan son atraídos por el núcleo con más fuerza por la carga positiva del núcleo
    • En iones negativos (aniones): el tamaño del anión es más grande que el del átomo neutro. Un ión negativo se forma cuando el átomo gana electrones. Estos electrones aumentan las fuerzas de repulsión existentes entre ellos
  • 12. ENERGÍA DE IONIZACIÓN. La energía de ionización disminuye al descender en un grupo ya que la carga nuclear aumenta y también aumenta el número de capas electrónicas, por lo que el electrón a separar que está en el nivel energético más externo, sufre menos la atracción de la carga nuclear (por estar más apantallado ) y necesita menos energía para ser separado del átomo La primera energía de ionización (EI) es la energía necesaria para arrancar el electrón más externo de un átomo en estado gaseoso Ca (g) + EI Ca + (g) + e - La segunda energía de ionización es la energía necesaria para arrancar el siguiente electrón del ión monopositivo formado: Ca + (g) + 2ªEI Ca 2+ (g) + e -
  • 13. ENERGÍA DE IONIZACIÓN La energía de ionización crece al avanzar en un período ya que al avanzar en un período, disminuye el tamaño atómico y aumenta la carga positiva del núcleo. Así, los electrones al estar atraídos cada vez con más fuerza, cuesta más arrancarlos Excepciones: las anomalías que se observan tienen que ver con la gran estabilidad que poseen los átomos con orbitales semiocupados u ocupados, debido a que los electrones son más difíciles de extraer.
  • 14. AFINIDAD ELECTRÓNICA. Afinidad electrónica es el cambio de energía que acompaña al proceso de adición de un electrón a un átomo gaseoso (AE). Los valores de la afinidad electrónica se consideran, normalmente, para 1 mol de átomos La mayoría de los átomos neutros, al adicionar un electrón, desprenden energía, siendo los halógenos los que más desprenden y los alcalinotérreos los que absorben más energía La variación de la afinidad electrónica es similar a la de la energía de ionización, sin embargo hay algunas excepciones y la afinidad electrónica de algunos elementos se desconoce La afinidad electrónica está relacionada con el carácter oxidante de un elemento. Cuanta mayor energía desprenda un elemento al ganar un electrón, mayor será su carácter oxidante . Así, los halógenos tienen un elevado carácter oxidante, al contrario de los alcalinotérreos que carecen de carácter oxidante Aplicando el convenio de termodinámica de signos, un ejemplo sería: F (g) + e - F - (g) + 328 KJ / mol se desprende energía  AE  0 ( AE=- 328 KJ /mol ) Be (g) + e - + 240 KJ / mol Be - (g) se absorbe energía  AE  0( AE=+ 240 KJ /mol )
  • 15. ELECTRONEGATIVIDAD. La electronegatividad es la tendencia que tienen los átomos de un elemento a atraer hacia sí los electrones cuando se combinan con átomos de otro elemento. Por tanto es una propiedad de los átomos enlazados La electronegatividad aumenta con el número atómico en un período y disminuye en un grupo . El valor máximo será el del grupo 17 y el valor nulo es el de los gases nobles La determinación de la electronegatividad se hace conforme a dos escalas: Escala de Mulliken: Considera la electronegatividad como una propiedad de los átomos aislados, su valor es: Escala de Pauling: Se expresa en unidades arbitrarias: al flúor, se le asigna el valor más alto, por ser el elemento más electronegativo, tiene un valor de 4 y al cesio, que es el menos electronegativo se le asigna el valor de 0,7
  • 16. CARÁCTER METÁLICO.
    • Metales:
    • Pierden fácilmente electrones para formar cationes
    • Bajas energías de ionización
    • Bajas afinidades electrónicas
    • Bajas electronegatividades
    • Forman compuestos con los no metales, pero no con los metales
    Según el carácter metálico podemos considerar los elementos como:
    • No Metales :
    • Ganan fácilmente electrones para formar aniones
    • Elevadas energías de ionización
    • Elevadas afinidades electrónicas
    • Elevadas electronegatividades
    • Forman compuestos con los metales, y otros con los no metales
    • Semimetales o metaloides:
    • Poseen propiedades intermedias entre los metales y los no metales (Si, Ge)
  • 17. REACTIVIDAD.
    • Disminuye al avanzar en un período
    • Aumenta al descender en el grupo
    • Aumenta al avanzar en un período
    • Aumenta al ascender en el grupo
    Los metales reaccionan perdiendo electrones , así cuanto menor sea su energía de ionización serán más reactivos. La reactividad: Los no metales reaccionan ganando electrones , así cuanto mayor sea su afinidad electrónica serán más reactivos. La reactividad: En los gases nobles la reactividad es casi nula o muy baja, debido a que poseen configuraciones electrónicas muy estables
  • 18. LAS PROPIEDADES PERIÓDICAS VARÍAN DE LA SIGUIENTE MANERA