Your SlideShare is downloading. ×
0
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

„Automate Information Lifecycle Management with Oracle Database 12c” Krzysztof Marciniak, Senior Sales Consultant, Oracle Polska

553

Published on

Plug into the Cloud with Oracle Database12c

Plug into the Cloud with Oracle Database12c

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
553
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
34
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide
  • Let’s talk for a moment about the challenges that data growth has on your database environment.  Today we accept that we’re living in an era of data explosion. According to IDC, the total amount of digital information in the world has been increasing roughly ten-fold every five years.  More storage of course means more disk drives, which consume more datacenter space, power, and cooling resources, as well as human resources.  This means that the budget for storage also keeps growing. Companies will spend more than one-fourth of their IT budgets on storage requirements.ILM is a result of the amount of data that is growing exponentially.Amount of data is growing exponentially Today’s digital universe will grow 20X over next 10 years Not just “Big Data” – also structured data in relational databasesCost of hardware storage is shrinking – but not exponentiallyCost per IOP is not improving muchAdding more Tier 1 storage to production databases with performance problems can be expensiveStorage tiering and ILM is complex
  • 100% Application TransparentEnd-to-end Cost/Performance Benefits across CPU, DRAM, Flash, Disk & NetworkRuns Faster: OLTP Apps (both Transactional & Analytics) & DWGreater speedup from In-memory (3-10x more fits in Buffer Cache & Flash Cache)Faster Loads (Load into uncompressed, then ADO in background)Faster Queries (Dictionary-driven Filtering, Enables Columnar for OLTP)Faster Backup & Restore SpeedsReduces FootprintCapEx & OpEx savingsCapEx: Lowers Server & Storage Cost for Primary, Standby, Backup, Test & Dev DatabasesOpEx: Lowers Heating, Cooling, Floor space Costs, Heat Map & Declarative SQL (no manual scripting)Additional Ongoing Savings over life of a database as database grows in sizeIncreases Cloud ROI through Database Footprint reduction in DRAM Memory3 to 10x greater Consolidation on the same hardware
  • No Performance Impact ??
  • Data loads against uncompressed blocksDefer advanced row (“OLTP”) compression to backgroundPolicy evaluated once / dayRow level policies only support COMPRESS ADVANCED and are on MODIFICATION only.
  • As data ages:Activity declinesVolume growsOlder data primarily for reportingalter table … add policy… compress for query after 3 months of no modification … compress for archive after 1 year …
  • As data cools down, Advanced Data Optimization automatically moves it to a READONLY TBS, its backed up only once after that
  • Storage tiering policies applied automatically when tablespace under space pressure
  • As data cools down, Advanced Data Optimization automatically moves it to a READONLY TBS, its backed up only once after that
  • Storage tiering policies applied automatically when tablespace under space pressure
  • As data ages:It becomes read-mostly need not be backed up repeatedlyalter table add policy… move to tbs_archivereadonly
  • Transcript

    • 1. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted1
    • 2. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted2 The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle‟s products remains at the sole discretion of Oracle. Release timing for Oracle Database 12c is planned for Calendar Year 2013.
    • 3. Automatic Data Optimization with Oracle Database 12c Krzysztof Marciniak Senior Sales Consultant krzysztof.marciniak@oracle.com
    • 4. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted4 Agenda  Data Growth‟s Impact  Heat Map Access Tracking  Automatic Data Optimization  ILM Benefits of 12c
    • 5. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted5 Growth in Data Diversity and Usage 1,800 Exabytes of Data in 2011, 20x Growth by 2020 Mobile #1 Internet access device in 2013 Big Data Large customers top 50PB Enterprise 45% per year growth in database data Cloud 80% of new applications and their data Regulation 300 exabytes in archives by 2015 Social Business $30B/year in commerce by 2015 Today‟s Drivers Emerging Growth Factors
    • 6. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted6 Storage Management Challenges Compress data, without impacting performance Manage more data without incurring additional cost Tier and compress data based on usage
    • 7. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted7 Information Lifecycle Management Managing Data Over its Lifetime “The policies, processes, practices, and tools used to align the business value of information with the most appropriate and cost effective IT infrastructure from the time information is conceived through its final disposition.” Storage Networking Industry Association (SNIA) Data Management Forum $$$ Total Cost of Ownership (TCO) $$$ High Value Medium Value Low Value ValueatRisk
    • 8. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted8 Introducing Heat Map for Data Compression Reduce storage footprint, read compressed data faster Hot Data Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Confidential – Oracle Restricted8 111010101010101 001101010101011 010001011011000 110100101000001 001110001010101 101001011010010 110001010010011 111001001000010 001010101101000 10101010111010100110101 11000010100010110111010 10100101001001000010001 01010110100101101001110 00010100100101000010010 00010001010101110011010 Warm Data 101010101110101 001101011100001 010001011011101 010100101001001 000010001010101 101001011010011 100001010010010 100001001000010 001010101101001 10101010111010100110101110000101000101 10111010101001010010010000100010101011 01001011010011100001010010010100001001 00001000101010111001101110011000111010 Archive Data 101010101110101 001101011100001 010001011011101 010100101001001 000010001010101 101001011010011 100001010010010 100001001000010 001010101101001 10101010111010100110101110000101000101101110101 01001010010010000100010101011010010110100111000 01010010010100001001000010001010101110011011100 3X Advanced Row Compression 10X Columnar Query Compression 15X Columnar Archive Compression
    • 9. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted9 Oracle Advanced Compression Transparent, Smaller, Faster  100% Application Transparent  End-to-end Cost/Performance Benefits across CPU, DRAM, Flash, Disk & Network  Runs Faster: OLTP Apps (Transactional & Analytics) & DW  Reduces Database Footprint – Decreases CapEx & OpEx – Increases Cloud ROI through Database Footprint reduction in DRAM Memory
    • 10. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted10 Oracle Advanced Compression New Features, New Feature NamesOracleAdvancedCompression Oracle Database 11g Oracle Database 12c OLTP Compression Advanced Row Compression Secure Files Compression Advanced LOB Compression Secure Files De-duplication Advanced LOB Deduplication Hybrid Columnar Compression Hybrid Columnar Compression NEW Heat Map (Object and Row Level) NEW Automatic Data Optimization NEW Temporal (Advancements)
    • 11. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted11 Heat Map What it tracks  “Heat Map” tracking – Database level Heat Map shows which tables and partitions are being used – Block level Heat Map shows last modification at the block level  Comprehensive – Segment level shows both reads and writes – Distinguishes index lookups from full scans – Automatically excludes stats gathering, DDLs or table redefinitions  High Performance – Object level at no cost – Block level < 5% cost Active Frequent Access Occasional Access Dormant Actively updated Infrequently updated, Frequently Queried Infrequent access for query and updates Long term analytics & compliance HOT COLD
    • 12. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted12 Understanding Data Usage Patterns Database „heat map‟ 10 0111 10 10 0111 101 1 00 0101 10 10 0101 10 0 0 10 0111 10 10 0111 100 0 10 0111 10 00 0111 001 1 01 0101 10 00 0101 101 1 10 0100 11 10 0111 100 0 10 0111 10 10 0111 100 0 10 0111 00 00 0111 100 1 10 0100 11 10 0111 100 0 10 0101 10 10 0101 001 1 00 0101 10 10 0101 101 1 10 0100 11 10 0111 100 0 10 0110 11 10 0111 100 0 10 0111 10 00 0111 001 1 01 0101 10 00 0101 101 1 10 0100 11 10 0111 100 0 10 0111 10 10 0111 100 0 10 0111 00 00 0111 100 1 00 0101 10 10 0101 101 1 10 0100 11 10 0111 100 0 00 0101 10 10 0101 101 1 10 0111 10 10 0111 100 0 10 0101 10 10 0101 001 1 10 0100 11 10 0111 100 0 10 0111 11 10 0111 100 0 10 0111 10 10 0111 101 1 10 0110 11 10 0111 100 0 10 0100 11 10 0111 100 0 10 0111 11 10 0111 100 0 10 0111 10 10 0111 101 1 10 0110 11 10 0111 100 0 10 0111 10 10 0111 100 0 1 1 1 1 10 0100 11 10 0111 100 0 10 0100 11 10 0111 10 10 0111 10 10 0111 10 10 0100 11 10 0111 100 0 10 0100 11 10 0111 100 0 10 0111 10 10 0111 100 0 10 0111 10 00 0111 001 1 01 0101 10 00 0101 101 1 10 0100 11 10 0111 100 0 10 0111 10 10 0111 100 0 10 0111 00 00 0111 100 1 10 0100 11 10 0111 100 0 10 0101 10 10 0101 001 1 00 0101 10 10 0101 101 1 10 0100 11 10 0111 100 0 00 0101 10 10 0101 101 1 10 0111 10 10 0111 100 0 10 0101 10 10 0101 001 1 10 0100 11 10 0111 100 0 10 0111 10 10 0111 100 0 10 0111 10 00 0111 001 1 01 0101 10 00 0101 101 1 10 0100 11 10 0111 100 0 10 0111 10 10 0111 100 0 00 0101 10 10 0101 101 1 10 0111 10 10 0111 100 0 10 0101 10 10 0101 001 1 00 0101 10 10 0101 101 1 10 0100 11 10 0111 100 0 10 0111 10 10 0111 100 0 10 0111 10 00 0111 001 1 01 0101 10 00 0101 101 1 10 0100 11 10 0111 100 0 10 0111 10 10 0111 100 0 00 0101 10 10 0101 101 1 10 0111 10 10 0111 100 0 10 0101 10 10 0101 001 1 00 0101 10 10 0101 101 1 10 0100 11 10 0111 100 0 10 0111 10 00 0111 001 1 01 0101 10 00 0101 101 1 10 0100 11 10 0111 100 0 10 0111 10 10 0111 100 0 10 0111 00 00 0111 100 1 00 0101 10 10 0101 101 1 10 0100 11 10 0111 100 0 10 0111 11 10 0111 100 0 10 0111 10 10 0111 101 1 10 0110 11 10 0111 100 0 10 0111 10 10 0111 100 010 0111 10 10 0111 100 0 10 0110 11 10 0111 100 0 10 0100 11 10 0111 100 0 10 0111 11 10 0111 100 0 10 0111 10 10 0111 101 1 10 0110 11 10 0111 100 0
    • 13. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted13 Understanding Data Usage Patterns Database „heat map‟ 10 0111 10 10 0111 101 1 00 0101 10 10 0101 10 0 0 10 0111 10 10 0111 100 0 10 0111 10 00 0111 001 1 01 0101 10 00 0101 101 1 10 0100 11 10 0111 100 0 10 0111 10 10 0111 100 0 10 0111 00 00 0111 100 1 10 0100 11 10 0111 100 0 10 0101 10 10 0101 001 1 00 0101 10 10 0101 101 1 10 0100 11 10 0111 100 0 10 0110 11 10 0111 100 0 10 0111 10 00 0111 001 1 01 0101 10 00 0101 101 1 10 0100 11 10 0111 100 0 10 0111 10 10 0111 100 0 10 0111 00 00 0111 100 1 00 0101 10 10 0101 101 1 10 0100 11 10 0111 100 0 00 0101 10 10 0101 101 1 10 0111 10 10 0111 100 0 10 0101 10 10 0101 001 1 10 0100 11 10 0111 100 0 10 0111 11 10 0111 100 0 10 0111 10 10 0111 101 1 10 0110 11 10 0111 100 0 10 0100 11 10 0111 100 0 10 0111 11 10 0111 100 0 10 0111 10 10 0111 101 1 10 0110 11 10 0111 100 0 10 0111 10 10 0111 100 0 1 1 1 1 10 0100 11 10 0111 100 0 10 0100 11 10 0111 10 10 0111 10 10 0111 10 10 0100 11 10 0111 100 0 10 0100 11 10 0111 100 0 10 0111 10 10 0111 100 0 10 0111 10 00 0111 001 1 01 0101 10 00 0101 101 1 10 0100 11 10 0111 100 0 10 0111 10 10 0111 100 0 10 0111 00 00 0111 100 1 10 0100 11 10 0111 100 0 10 0101 10 10 0101 001 1 00 0101 10 10 0101 101 1 10 0100 11 10 0111 100 0 00 0101 10 10 0101 101 1 10 0111 10 10 0111 100 0 10 0101 10 10 0101 001 1 10 0100 11 10 0111 100 0 10 0111 10 10 0111 100 0 10 0111 10 00 0111 001 1 01 0101 10 00 0101 101 1 10 0100 11 10 0111 100 0 10 0111 10 10 0111 100 0 00 0101 10 10 0101 101 1 10 0111 10 10 0111 100 0 10 0101 10 10 0101 001 1 00 0101 10 10 0101 101 1 10 0100 11 10 0111 100 0 10 0111 10 10 0111 100 0 10 0111 10 00 0111 001 1 01 0101 10 00 0101 101 1 10 0100 11 10 0111 100 0 10 0111 10 10 0111 100 0 00 0101 10 10 0101 101 1 10 0111 10 10 0111 100 0 10 0101 10 10 0101 001 1 00 0101 10 10 0101 101 1 10 0100 11 10 0111 100 0 10 0111 10 00 0111 001 1 01 0101 10 00 0101 101 1 10 0100 11 10 0111 100 0 10 0111 10 10 0111 100 0 10 0111 00 00 0111 100 1 00 0101 10 10 0101 101 1 10 0100 11 10 0111 100 0 10 0111 11 10 0111 100 0 10 0111 10 10 0111 101 1 10 0110 11 10 0111 100 0 10 0111 10 10 0111 100 010 0111 10 10 0111 100 0 10 0110 11 10 0111 100 0 10 0100 11 10 0111 100 0 10 0111 11 10 0111 100 0 10 0111 10 10 0111 101 1 10 0110 11 10 0111 100 0
    • 14. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted14 Heat Map Enterprise Manager
    • 15. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted15 Heat Map for Tables and Partitions “segment” level tracking ORDERS
    • 16. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted16 Heat Map for Blocks “row” level tracking ORDERS
    • 17. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted17 0101101110101010010100100100001000 1010101101001011010011100001010010 Archive Data 011100001010001011011 101010100101001001000 010001010101101001011 010101001010010010001 Automatic Data Optimization Usage Based Data Compression Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Confidential – Oracle Restricted17 Hot Data 3X Advanced Row Compression Warm Data 1010101011101010011010111000010100 0101101110101010010100100100001000 1010101101001011010011100001010010 0101000010010000100010101011010010 10X Columnar Query Compression 1000010100100101001010110111000010 101010101110101001101011100001010001011011 101010100101001001000010001010101101001011 010011100001010010010100001001000010001010 101010101110101001101011100001010001011011 15X Columnar Archive Compression 01110101010010 10000100010101 01011100001010 10101010111010100110101 11000010100010110111010 10100101001001000010001 01010110100101101001110 00010100100101000010010 00010001010101110011010 10100101001001000010001 1110010100100101001010110111011010 101010101110101001101011100001011101011001
    • 18. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted18 Compress Rows Based on Usage “background row compression” ORDERS SQL> ALTER TABLE EMPLOYEE ILM ADD POLICY ROW STORE COMPRESS ADVANCED ROW AFTER 1 DAY OF NO MODIFICATION
    • 19. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted19 Compress Partitions Based on Usage Automatic Data Optimization with HCC ORDERS SQL> ALTER TABLE ORDERS ILM ADD POLICY COMPRESS FOR QUERY HIGH SEGMENT AFTER 30 DAYS OF NO MODIFICATION
    • 20. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted20 Optimize Data Storage Based on Usage Automatic Data Optimization with HCC ORDERS  Optimized use of Row Store & Column Store within a single table – Row Format - Insert / load data as fast as possible – Fast analytics & reporting – data optimized in columnar format for analytics
    • 21. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted21 Automatic Data Optimization This Quarter This Year Prior Years Row Store for fast OLTP Compressed Column Store for fast analytics 10x compressed 15x compressed As data cools down, Advanced Data Optimization automatically converts data to columnar compressed Online Archive Compressed Column Store for max compression Reporting Compliance & ReportingOLTP
    • 22. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted22 Up to 15x Smaller Footprint & Faster Queries  Both Columnar & Archive Compression now complement Advanced Row Compression  Best Practice: – Step 1: Use Advanced Row Compression for entire DB and then – Step 2: ADO automatically converts into columnar compressed once the updates cool down, and is used mainly for reporting => Query speed of Columnar & 10x smaller footprint – Step 3: ADO automatically converts into archive compressed once data cools down further and is no longer frequently queried => 15-50x smaller footprint Automatic Data Optimization for OLTP
    • 23. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted23 Optimizes Data Based on Heat Map Automatic Data Optimization for DW  Data generally comes in via Bulk Loading  Workload dominated by queries, even during loading Step 1: Bulk Load directly into Columnar Compressed – 10x smaller footprint, Query speed of Columnar Step 2: ADO automatically converts to Archive Compressed and moves to Lower Cost Storage once its queried infrequently – Data remains online, with 15-50x smaller footprint, & lower storage cost
    • 24. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted24 Fast, Flexible Loads & Queries on Columnar  Fastest Load with uncompressed & Fastest Queries with columnar – Mixed workloads often use Java app or 3rd party tools to insert and update data that does not use Bulk Loads, so cannot use Columnar  Step 1: Load into uncompressed, conventional inserts & updates – Fast loading, & flexibility of using a regular OLTP app for loading  Step 2: ADO moves to Row Compressed or Columnar Compressed or Low Cost Storage once updates cool down – Faster Queries, 3-10x smaller footprint Automatic Data Optimization – Mixed Use
    • 25. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted25 Storage Tiering – How it Works? Automatic Data Optimization 1. Tables grow in size ADO policies compress data 2. Tablespace containing partitions reaches ADO tiering threshold 3. Partitions are moved to different tablespace on lower spec disk group ORDERS
    • 26. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted26 Powerful Policy Specification Automatic Data Optimization  Declarative Policy Specification: Condition  Action – alter table sales ilm add policy compress for OLTP row after 3 days of no modification; – Conditions are time period after creation, access, modification of data – Actions can be Compression Tiering or Tablespace Tiering  Policies are inherited from the tablespace or table – New tables inherit from tablespace; can also be applied to existing tables – New partitions (including interval partitions) inherit from table
    • 27. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted27 Simple Declarative SQL extension Automatic Data Optimization ALTER TABLE sales ILM add Active Frequent Access Occasional Access Dormant  OLTP Compressed (2-4x)  Affects ONLY Candidate Rows  Cached in DRAM & FLASH compress for OLTP row after 2 days of no update  Warehouse Compressed (10x)  High Performance Storage compress for query low after 1 week of no update  Warehouse Compressed (10x)  Low Cost Storage tier to SATA Tablespace  Archive Compressed (15-50X)  Archival Storage compress for archive high after 6 months no access
    • 28. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted28 Storage Tiering - Policy Automatic Data Optimization SQL> ALTER TABLE EMPLOYEE ILM ADD POLICY TIER TO LOW_COST_TABLESPACE
    • 29. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted29 Scheduled Policy Execution Automatic Data Optimization  Immediate and background policy execution – Row level policies are executed periodically (Users can configure the frequency of execution) – Segment level policies are executed in maintenance windows  Policies can be extended to incorporate Business Rules – Users can add custom conditions to control placement (e.g. 3 months after the ship date of an order)
    • 30. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted30 Optimized Backups Automated READONLY data movement 1. Tables grow in size ADO policies compress data 2. Tablespace containing partitions reaches ADO tiering threshold 3. Partitions are moved to new read only tablespace on lower spec disk group ORDERS
    • 31. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted31 Optimized Backups Automated READONLY Data Movement SQL> ALTER TABLE EMPLOYEE ILM ADD POLICY TIER TO DATA2 READ ONLY AFTER 180 DAYS OF NO MODIFICATION Expected syntax for production..
    • 32. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted32 Backup & Recovery Automatic Data Optimization Read / Write Tablespace Read-mostly data is moved to a READONLY Tablespace 10x compressed 15x compressed READONLY TBS As data cools down, Automatic Data Optimization automatically moves it to a READONLY TBS, it’s backed up only once after that Reporting Compliance & ReportingOLTP
    • 33. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted33 More Compression Features New in Oracle Database 12c Logminer and GoldenGate support  Capture side changes in 11.1 logminer  Apply side changes in 11.2 Faster queries on advanced row compression Wide tables (>255 columns) for advanced row (OLTP) compression Network Compression
    • 34. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted34 Summary Heat Map & Automatic Data Optimization  Heat Map – Automatically tracks access – Database-aware: maintenance jobs, backups, etc don‟t affect Heat Map  Automatic Data Optimization – Declarative easy-to-use syntax to define data compression & movement policies – Extensible with business-specific logic
    • 35. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted35 Graphic Section Divider
    • 36. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted36
    • 37. Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle Confidential Restricted37 Oracle Database 12c introduces Automatic Data Optimization capabilities which allow organizations to use policy-based management to automate data compression and movement with minimal administration. In this session you‟ll learn how Heat Map provides deep insight into how your data is accessed by users and applications to trigger Automatic Data Optimization policies that reduce the costs associated with storing and managing more data, while improving database performance. Abstract

    ×