Integrales
Upcoming SlideShare
Loading in...5
×
 

Integrales

on

  • 154 views

 

Statistics

Views

Total Views
154
Views on SlideShare
154
Embed Views
0

Actions

Likes
0
Downloads
3
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Integrales Integrales Presentation Transcript

  • APLICACIONES DE LAS INTEGRALES CALCULO DE AREAS DE FIGURAS PLANAS
  • Índice 1 Área del recinto donde interviene una función 1.1 La función f(x) es positiva en [a, b] 1.2 La función f(x) es negativa en [a, b] 1.3 La función toma valores positivos y negativos en [a, b] 2 Área del recinto donde intervienen dos funciones 2.1 Las dos funciones no se cortan en [a, b] 2.2 Las dos funciones se cortan en [a, b]
  • 1.1 La función f(x) es positiva en [a, b] [ ]b,aen0)x(f ≥ Área del recinto = ∫ b a dx)x(f 1 Área del recinto donde interviene una función El recinto será el limitado por la función f(x), el eje OX y dos recta verticales x =a y x = b. Volver al índice
  • y=x2 y=x4 -2x3 +2 Área = 2 4 2 4 2 3 2 u 3 56 3 8 3 64 3 x dxx =−=      =∫ Área = ∫− − =      +−=+− 2 1 2 2 1 45 34 u 10 51 x2 2 x 5 x dx)2x2x( Ejemplos 1. Hallar el área del recinto limitado por la parábola de ecuación y = x2 , el eje OX, la recta x = 2 y la recta x = 4. 2. Hallar el área de la región R limitada por la curva y = x4 – 2x3 + 2 entre x = -1 y x = 2.
  • 1.2 La función f(x) es negativa en [a, b] Área del recinto = - ∫ b a dx)x(f Ejemplo: Área = 2 2 2 2 2 3 2 u 3 16 3 8 3 8 3 x dx)x( =+=         =−− −− ∫ y = -x2 Hallar el área del recinto determinado por la parábola de ecuación y = -x2 , el eje OX y las rectas x = -2 y x = 2 El recinto será el limitado por la función f(x), el eje OX y dos recta verticales x =a y x = b. Volver al índice
  • 1.3 La función toma valores positivos y1.3 La función toma valores positivos y negativosnegativos Área (R) = ∫∫∫∫ −+− b e e d d c c a dx)x(fdx)x(fdx)x(fdx)x(f Volver al índice
  • Ejemplo: 1. Hallar el área delimitada por la gráfica de y = cos x y el eje OX en el intervalo [0 , 2π] 2 π 2 3π π2 y=cosx Área (R) = 2 u4dxxcosdxxcosdxxcos 2 3 2 2 2 3 2 0 ∫ ∫∫ π π π π π =+−
  • Ejemplo: 2. Hallar el área limitada por la curva y = x3 – 6x2 + 8x y el eje OX. Área (R) = 24 2 232 0 23 u8dx)x8x6x(dx)x8x6x( =+−−+− ∫∫ y = x3 – 6x2 + 8x
  • Ejemplo: 1. Hallar el área de la región limitada por las funciones y = x2 e y = 2x – 3 entre x = 2 y x = 4 Área (R) = 24 2 2 u 3 38 dx)]3x2(x[ =−−∫ y = x2 y = 2x – 3
  • 2.2 Las dos funciones se cortan en [a, b] Área (R) = ∫∫ −+− b c c a dx)]x(g)x(f[dx)]x(f)x(g[ Volver al índice
  • Ejemplo: 1. Hallar el área de la región limitada por las funciones y = x2 e xy = y = x2 xy = Área (R) = 2 1 0 3 2 3 1 0 21 0 2 1 u 3 1 3 x x 3 2 dxxdxx =         −=− ∫∫
  • Ejemplo: 2. Hallar el área del recinto limitado por la parábola y = x2 , la recta y = -x + 2 y el eje OX Área (R) = 22 1 1 0 2 u 6 5 dx)2x(dxx =+−+ ∫∫ y = x2 y = - x + 2
  • AUTORES ANA ANDRÉS JESÚS MARTÍNEZ AMADEO BAYOD MIGUEL TREMPS