Your SlideShare is downloading. ×
Lcr Thesis Presentation Final
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Saving this for later?

Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime - even offline.

Text the download link to your phone

Standard text messaging rates apply

Lcr Thesis Presentation Final

909
views

Published on

Master\'s thesis defense presentation

Master\'s thesis defense presentation


0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
909
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
11
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. SWANSON School of Engineering CONCRETE MIXTURE PROPERTIES AFFECTING THE AGGREGATE INTERLOCK MECHANISM OF JOINTS AND CRACKS FOR RIGID PAVEMENT SYSTEMS LUIS CARLOS RAMIREZ Advisor : Dr. Julie Vandenbossche Masters Thesis Defense November 19, 2010
  • 2. OUTLINE INTRODUCTION MOTIVATION APPROACH RESEARCH OBJECTIVES METHODOLOGY EXECUTION RESULTS AND ANALYSIS CONCLUSIONS FUTURE WORK Masters Thesis Defense 11/19/2010
  • 3. INTRODUCTION Pavement Performance Faulting Punchouts Corner Breaks Transverse Cracking Masters Thesis Defense 11/19/2010
  • 4. INTRODUCTION Load Transfer Efficiency (LTE) of Cracks and Joints (LTE) L= 1 U= 0 L= 1 U= 1 U LTE = x100% L Masters Thesis Defense 11/19/2010
  • 5. INTRODUCTION Aggregate Interlock Mechanism PCC Slab Base LTEjoint=LTEbase+LTEAGG 20%-40% AGG= Joint Spring Stiffness Masters Thesis Defense 11/19/2010
  • 6. INTRODUCTION Factors Affecting the Aggregate Interlock Mechanism Crack Surface Texture Crack width CA Top CA Matrix CA CA Size Hardness Strength Gradation Angularity Masters Thesis Defense 11/19/2010
  • 7. MOTIVATION Damage accumulation σ+δ= f( AGG/kl) AGG/kl) M-E Design AGG = f( LTE) LTE = f( Surface texture) texture) Surf. texture = f( PCC Material properties) Masters Thesis Defense 11/19/2010
  • 8. APPROACH Surface Texture Concrete Vandenbossche (1999) (1999) Mixture Properties Ioannides LTE et.al (1990) AGG/ AGG/kl Masters Thesis Defense 11/19/2010
  • 9. RESEARCH OBJECTIVES 1. Establish a relationship between PCC properties and LTE. LTE. 2. Establish a relationship between PCC properties and AGG. AGG. 3. Investigate the effect of PCC properties on fracture parameters. 4. Determine influence of fracture parameters on the aggregate interlock. Masters Thesis Defense 11/19/2010
  • 10. METHODOLOGY Select Cast Identify Data Points Specimens Data Gaps to Include & Testing Data Calculate Selection Results Previous from Tests Studies Data Analyzed Statistical Analysis of Development Combined Data Fitting Results of Models Data Masters Thesis Defense 11/19/2010
  • 11. Full Factorial Design Matrix LA Category CA Top Size (in) w/c ratio Category Existent Low strength 0.75 Medium strength High strength Low strength Low resistance to abrasion 1.5 Medium strength EXECUTION High strength Low strength 2.5 Medium strength High strength Low strength 0.75 Medium strength High strength Low strength Medium resistance to abrasion 1.5 Medium strength High strength Low strength 2.5 Medium strength High strength Low strength 0.75 Medium strength High strength Low strength High resistance to abrasion 1.5 Medium strength High strength Low strength 2.5 Medium strength High strength Masters Thesis Defense 11/19/2010
  • 12. EXECUTION Concrete Mixtures Properties Concrete Mix LS_0.75_17_0.4 LS_0.75_17_0.45 SL_1.25_34_0.4 SL_0.75_34_0.4 SL_0.75_34_0.45 ID Aggregate Type Limestone Limestone Slag Slag Slag Top Aggregate 0.75 0.75 1.25 0.75 0.75 Size (in) Coarse Aggregate Volumetric 44 Proportion (%) Water-to- Cement Ratio 0.4 0.45 0.4 0.4 0.45 LA Value (%) 17 34 Absorption 0.5 4.78 Capacity, (%) Bulk Specific 2.71 2.35 Gravity CA Gradation AASHTO No. 57 Masters Thesis Defense 11/19/2010
  • 13. EXECUTION Testing Program Day 1 Day 28 Fracture Energy Fracture Energy Test RILEM TPM Test RILEM TPM 1990 1990 (4 specimens per (4 specimens per mixture) mixture) Volumetric Surface Texture VST Test (35 Fractured Flexural Strength Faces) Test ASTM C78 (3 specimens per mixture) Masters Thesis Defense 11/19/2010
  • 14. INTRODUCTION Volumetric Surface Texture Test (VST) Vandenbossche (1999) Masters Thesis Defense 11/19/2010
  • 15. RESULTS AND ANALYSIS 0.2365 in3/in2 VSTR Results 0.1289 in3/in2 Masters Thesis Defense 11/19/2010
  • 16. RESULTS AND ANALYSIS VSTR Model VSTR=0.3689+0.5004*TS-24.5162*(1/LA)-0.0540*w/c+0.2049*TS2- 2.2665*TS*w/c+61.5434*(w/c/LA) Response Surface Method (RSM) VSTR =Volumetric Surface Texture Ratio (in3/in2) R2=0.91 Adjusted R2=0.86 TS = Aggregate Top Size(in) LA = LA Abrasion (%) w/c =w/c ratio Source p-value Terms p-value 0.600 Regression 0.0000 Constant 0.000 Predicted VSTR (in³/in²) 0.500 Linear 0.0010 TS 0.002 0.400 0.300 Square 0.0010 1/LA 0.000 0.200 0.100 Interaction 0.0000 w/c 0.001 0.000 0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 TS2 0.000 Measured VSTR (in³/in²) TS*w/c 0.000 w/c/LA 0.005 Masters Thesis Defense 11/19/2010
  • 17. RESULTS AND ANALYSIS VSTR f(CA Top Size, CA LA) w/c ratio =0.45 0.60000 0.50000-0.60000 0.50000 0.40000-0.50000 VSTR (in3/in2) 0.40000 0.30000-0.40000 0.20000-0.30000 0.30000 0.10000-0.20000 0.20000 0.00000-0.10000 0.10000 0.00000 16 21 26 31 LA (%) 37 2.34 2.02 42 1.71 1.39 CA top size(%) 1.07 0.75 Masters Thesis Defense 11/19/2010
  • 18. RESULTS AND ANALYSIS VSTR f(CA LA, w/c ratio) CA Top size = 1 in 0.35000 0.30000 VSTR (in3/in2) 0.25000 0.30000-0.35000 0.20000 0.25000-0.30000 0.15000 0.20000-0.25000 0.15000-0.20000 0.10000 0.10000-0.15000 0.05000 0.05000-0.10000 0.00000 0.38 0.40 0.00000-0.05000 0.43 w/c ratio 0.45 43 0.48 38 32 27 LA (%) 21 16 Masters Thesis Defense 11/19/2010
  • 19. RESULTS AND ANALYSIS LTE Model  VST  LTE = 39.7 ⋅ log  + 5.6  cw  R2=0.95 Adjusted R2 =0.90 VST = VTSR ⋅ t eff teff Vandenbossche (1999) [(0.3689 + 0.5004 ∗ TS − 24.5162 ∗ (1/ LA) − 0.0540 ∗ w / c + 0.2049 ∗ TS 2 − LTE = 39.7 ⋅ log{ 2.2665∗ TS ∗ w / c + 61.5434∗(w _ c / LA)]∗ 2.54 * teff } + 5.6 cw LTE= Load Transfer Efficiency (%) VST=Volumetric Surface Texture (in3/in) VSTR =Volumetric Surface Texture Ratio (in3/in2) TS = Aggregate Top Size(in) LA = LA Abrasion (%) w/c =w/c ratio Masters Thesis Defense 11/19/2010 teff= Slab Effective Thickness (cm) cw= Crack Width (cm)
  • 20. RESULTS AND ANALYSIS 100 90 0.75 in 80 LTE (%) 1 in 70 60 1.5 in 50 40 2 in 0 20 40 60 80 100 120 LTE vs. Crack Width Crack width (mils) 100 Jensen & Hansen (2001) 90 Predicted 1in Slab thickness =10 in Limestone LA =34% , TS =1in Gravel LA 22%, TS=2iin 80 Mesured 1 in LTE (%) 70 Predicted 2 in 60 50 Measured 2 in 40 0 20 40 60 80 100 120 Masters Thesis Defense 11/19/2010 Crack width (mils)
  • 21. RESULTS AND ANALYSIS AGG Model 100 90 ... 80  1  −1.17786  70  − 0.01  Load Transfer Efficiency, % 60 AGG =  LTE  ⋅k⋅l  0.012     50    40   30 20 Crovetti (1994) 10 0 Ioannides et. al (1990) 0.01 0.1 1 10 100 1000 Nondimensional Stiffness, AGG/kl [(0.3689 + 0.5004 ∗ TS − 24.5162 ∗ (1/ LA) − 0.0540 ∗ w / c + 0.2049 ∗ TS 2 − LTE = 39.7 ⋅ log{ 2.2665∗ TS ∗ w / c + 61.5434∗(w _ c / LA)]∗ 2.54 * teff } + 5.6 cw LTE= Load Transfer Efficiency (%) VST=Volumetric Surface Texture (in3/in) 0.25 VSTR =Volumetric Surface Texture Ratio (in3/in2)  Eh3  TS = Aggregate Top Size(in) l=  12 ⋅ (1− ν 2 )k   LA = LA Abrasion (%)   w/c =w/c ratio teff= Slab Effective Thickness (cm) cw= Crack Width (cm) k= Modulus of Subgrade Reaction (psi/in) Masters Thesis Defense 11/19/2010 l = Radius of Relative Stiffness (in)
  • 22. RESULTS AND ANALYSIS AGG f(LA, w/c ratio) k =200 psi l= 30 in cw=0.08 in teff=11 in CA top size= 1 in 7.00E+04 6.00E+04 5.00E+04 AGG (psi) 4.00E+04 6.00E+04-7.00E+04 5.00E+04-6.00E+04 3.00E+04 4.00E+04-5.00E+04 2.00E+04 3.00E+04-4.00E+04 1.00E+04 2.00E+04-3.00E+04 1.00E+04-2.00E+04 4.00E+01 0.38 0.40 4.00E+01-1.00E+04 0.42 w/c ratio 0.44 0.46 0.48 43 46 32 35 38 40 24 27 30 LA (%) 16 19 21 Masters Thesis Defense 11/19/2010
  • 23. CONCLUSIONS Development of VSTR model VSTR = f (w/c, TS, LA). Development of LTE model LTE = f (w/c, TS, LA, cw, t) Development of AGG model AGG= f (w/c, TS, LA, cw, t, k, l) Masters Thesis Defense 11/19/2010
  • 24. FUTURE WORK To expand and additional validation of VSTR model. To incorporate AGG model into the MEPDG. To investigate the effect of additional PCC properties on the surface texture. To investigate the relationship between concrete fracture parameters and the aggregate interlock mechanism. Masters Thesis Defense 11/19/2010
  • 25. Thank you! QUESTIONS?/COMMENTS? Masters Thesis Defense 11/19/2010