Circuitos com Diodos
Upcoming SlideShare
Loading in...5
×
 

Circuitos com Diodos

on

  • 312 views

 

Statistics

Views

Total Views
312
Views on SlideShare
312
Embed Views
0

Actions

Likes
1
Downloads
17
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Circuitos com Diodos Circuitos com Diodos Presentation Transcript

    • Diodo
    • Diodo Formação da camada de depleção Ao se juntar um elemento P a um elemento N, temos a seguinte situação: o elemento P tem excesso de lacunas; o elemento N tem excesso de elétrons. No ponto onde os dois cristais se tocam, tende a haver uma migração de elétrons e lacunas, até que se estabeleça um equilíbrio. Observe que se forma um equilíbrio na região da junção, deixando de existir portadores majoritários (elétrons livres ou lacunas). Essa camada, chamada camada de depleção (sinônimo de diminuição), impede que se gere um equilíbrio completo entre os cristais P e N. Isto porque os elétrons do cristal N não encontram lacunas para se movimentar pela camada de depleção. O mesmo ocorre com as lacunas que ficaram isoladas no lado P. Ou seja, a camada de depleção é uma espécie de "zona morta" onde não há espaço para movimentação de elétrons e lacunas.
    • Vamos agora submeter nosso diodo a uma tensão, ou seja, colocar uma bateria em seus terminais. Vamos conectar o terminal negativo (fluxo de elétrons) da bateria à porção N do diodo e o terminal positivo (fluxo de lacunas) à porção P. Desta forma, a região N, com excesso de elétrons, recebe ainda mais elétrons, e a porção P recebe ainda mais lacunas. Observe o que acontece: Polarização direta Os elétrons do lado N recebem toda a energia do pólo negativo da fonte, ganhando força suficiente para expulsar os elétrons que estão alojados na camada de depleção. Rompendo essa camada, eles encontram um terreno fértil em lacunas no lado P. Mas não param por aí: como eles são atraídos pelo pólo positivo da fonte, eles continuam a pular de lacuna em lacuna, abrindo espaço para que outros elétrons possam vir atrás deles. Com esse movimento, forma-se uma corrente elétrica. O semicondutor passa a se comportar como um condutor normal. Um dado técnico importante: para que ocorra o que está descrito na figura, é necessário que a bateria supra mais do que 0,7 volts, que é o valor da barreira de potencial que se forma na camada de depleção de um diodo de silício
    • Polarização inversa Vamos agora inverter a polaridade da bateria. Vamos conectar o terminal positivo da bateria à porção N do diodo e o terminal negativo à porção P. Desta forma, os elétrons da região N são atraídos pelas lacunas do pólo positivo da bateria e as lacunas da região P são completadas pelos elétrons do pólo negativo. Observe o que acontece: A camada de depleção aumenta sensivelmente. Se ela já dificultava a passagem de corrente, agora torna-se virtualmente impossível transpô-la. Os portadores majoritários de cada lado ficam ainda mais isolados. O semicondutor, então, passa a se comportar como um isolante. Não há passagem de corrente elétrica. Esse foi um grande passo no desenvolvimento da eletrônica. As válvulas diodo puderam ser substituídas com muitas vantagens pelo diodo semicondutor. E foi dado o passo definitivo para a construção do transístor.
    • Diodo
    • Tipos de Diodo
    • Diodo Zener Diodo Zener (também conhecido como diodo regulador de tensão , diodo de tensão constante, diodo de ruptura ou diodo de condução reversa) é um dispositivo ou componente eletrônico semelhante a um diodo semicondutor, especialmente projetado para trabalhar sob o regime de condução inversa, ou seja, acima da tensão de ruptura da junção PN, neste caso há dois fenômenos envolvidos o efeito Zener e o efeito avalanche. O dispositivo leva o nome em homenagem a Clarence Zener, que descobriu esta propriedade elétrica. O diodo Zener difere do diodo convencional pelo fato de receber uma dopagem (tipo N ou P) maior, o que provoca a aproximação da curva na região de avalanche ao eixo vertical. Isto reduz consideravelmente a tensão de ruptura e evidencia o efeito Zener que é mais notável à tensões relativamente baixas (em torno de 5,5 Volts) ZONA DE TRABALHO
    • Funcionamento e Aplicação do Diodo Varicap O nome Varicap é derivado das palavras em inglês: Voltage Variable Capacitance, isto é, diodo com capacitância variável por tensão. Apesar de ser pouco conhecido pela maioria dos técnicos de eletrônica, ele aparece em muitos equipamentos eletrônicos, sempre no estágio de RF, tanto na transmissão como na recepção. Está presente principalmente na sintonia dos receptores de última geração, com frequência sintetizada, sintonizados por controle remoto, assim como nos receptores de AM, FM e aparelhos de TV. Também é muito usado nos moduladores lineares de uma maneira geral, nos equipamentos profissionais, como por exemplo nos transmissores de FM e som de TV. Além dessas aplicações, ele aparece em uma infinidade de outras, entre as quais: • Amplificadores paramétricos • Osciladores controlados por tensão (VCO) • Geradores de sinais com frequência sintetizada • Filtros passa faixa, com largura de banda ajustável • Geradores de frequências harmônicas. Para que os técnicos possam consertar os equipamentos citados acima, precisam primeiro conhecerem o seu funcionamento e suas principais características, que serão vistos na sequência.
    • Diodo túnel O diodo túnel ou díodo Esaki é um tipo de diodo semicondutor extremamente rápido, que opera na casa dos GHz, através da utilização dos efeitos da mecânica quântica. Recebeu o nome do físico Leo Esaki, que em 1973 recebeu o Prêmio Nobel em Física pela descoberta do efeito túnel utilizado neste tipo de diodo semicondutor. Ele funciona somente na área de resistência negativa, ou seja diminui a tensão aumenta a corrente, somente quando tem-se uma tensão muito próxima de zero (chamada de avalanche, do diodo zener), ou seja, ele só funciona como diodo túnel quando polarizado diretamente e sob tensões bem baixas, para tensões fora dessa região ele funciona como um diodo comum. Resumidamente, o diodo túnel só atua com propriedades especificas em baixas tensões.
    • Diodo schottky O principal destaque do diodo schottky é o menor tempo de recuperação, pois não há recombinação de cargas do diodo de junção. Outra vantagem é a maior densidade decorrente, o que significa uma queda de tensão direta menor que a do diodo comum de junção. A contrapartida é uma corrente inversa maior, o que pode impedir o uso em alguns circuitos. São usados principalmente em circuitos de alta frequência, de alta velocidade de comutação Diodo Schottky é um tipo de diodo que utiliza o efeito Schottky na semicondução. Seu nome é uma homenagem ao físico alemão Walter Schottky. Esse Diodo serve para diminuir a carga "armadilha" no diodo. Um diodo comum ao passar da região direta de condução para a reversa, produz em um curto tempo uma corrente reversa alta, resultante de cargas armadilhas, tendo um efeito importante no uso de diodos através de frequência alta, com a fabricação de um diodo utilizando-se ao invés do material P um metal, não haverá lacunas que possam armadilhar elétrons vindos dos outros materiais durante a corrente direta, de forma que na passagem para corrente reversa haverá este aumento de corrente.
    • Diodos emissores de luz (LED) Ao passar por uma junção PN, elétrons sofrem transições de níveis de energia e, de acordo com princípios da física quântica, devem emitir alguma radiação. Semicondutores de germânio, de silício e outros comuns não emitem radiação visível. Mas ela é emitida por alguns semicondutores de compostos químicos, como arsenieto de gálio, fosfeto de gálio e índio, etc O diodo led deve ser diretamente polarizado para emitir luz. A Figura dá um circuito básico. Para a determinação de R uma vez conhecido V, pode-se supor corrente máxima de 20 mA A tensão inversa máxima da maioria dos leds é pequena, de forma que uma inversão de polaridade com alguns volts pode ser suficiente para danificar.
    • Fotodiodo Características de um fotodíodo: ·Comprimento de onda (l) da luz que accionará o dispositivo. ·Área sensível do componente que deverá receber o feixe de luz. Aplicações dos fotodíodos: ·Sistemas de segurança anti-roubo. ·Abertura automática de portas. ·Regulação automática de contraste e brilho na TV. O fotodíodo é um díodo semicondutor no qual a corrente inversa varia com a iluminação que incide sobre a sua junção PN. A corrente que existirá sem nenhuma iluminação aplicada é geralmente da ordem dos 10mA nos fotodíodos de germânio e de 1mA nos fotodíodos de silício
    • SCR - Tiristor O Tiristor SCR (Silicon Controlled Rectifier) foi desenvolvido por um grupo de engenheiros do Bell Telephone Laboratory (EUA) em 1957. É o mais conhecido e aplicado dos Tiristores existentes. Tiristor é o nome genérico dado à família dos componentes compostos por quatro camadas semicondutoras (PNPN). Os Tiristores SCR’s funcionam analogamente a um diodo, porém possuem um terceiro terminal conhecido como Gatilho (Gate ou Porta). Este terminal é responsável pelo controle da condução (disparo). Em condições normais de operação, para um SCR conduzir, além de polarizado adequadamente (tensão positiva no Ânodo), deve receber um sinal de corrente no gatilho, geralmente um pulso.
    • Experiências O que fazemos é ligar o diodo em série com uma lâmpada de modo que a corrente tenha de passar através dele para alimentá-la.. Assim, conforme ilustra a figura, observamos que quando ligamos o diodo de modo que ele seja polarizado no sentido direto, a corrente pode passar com facilidade e a lâmpada acenderá. No entanto, se o diodo for invertido a lâmpada não acenderá, pois ele estará polarizado no sentido inverso, condição na qual a corrente não passa.
    • Aplicações Simples Protetor de Aparelhos Redutor de Tensão Qualquer Polaridade: A Ponte de Graetz Circuito de “Reforço” de Potência