Group meeting presentation 07 18-12

173 views
137 views

Published on

Published in: Technology, Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
173
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • Group meeting presentation 07 18-12

    1. 1. Group MeetingLiterature Review: Main Group, Four Membered Heterocycles July 18, 2012 Stewart Lucas
    2. 2. Cyclic Distiba- andDibismadiazenium Cations1 Mathias Lehmann, Axel Schulz, and Alexander Villinger Angew. Chem. Int. Ed., 2012, Advance Article Universität Rostock, Institut für Chemie, Albert-Einstein-Strasse 3a,and Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert- Einstein-Strasse 29a, 18059 Rostock (Germany)
    3. 3. Four-membered Pnictogen-Nitrogen Heterocycles• 1,3-dihalogen-cyclo-1,3-dipicta(III)-2,4-diazenes. • E = P: Used in preparative phosphorus-nitrogen chemistry (macrocycles, polymers, main-group complexes, and generation of cyclic binary PN cations)2-6.• Diazanes with bulky R groups provide kinetic stabilization7-13. • Lewis acids used to generate cyclo-1,3-dipnicta(III)-2,4- diazenium cations14-16. • Ion pairs with large interatomic distances.
    4. 4. Four-membered Pnictogen-Nitrogen Heterocycles• 1,3-dihalogen-cyclo-1,3-dipicta(III)-2,4-diazenium cations. • Antimony and bismuth analogs are unknown.• Few examples of 17-21 N-E+-N compounds are known. • The [Me2Si(µ-NR)2E]+ contains strong intermolecular Draw out [ClE(µ-NTer)]2, interactions. [XE(µ-NTer)2E]+and [E2(µ-• This paper presents the synthesis of NR)2]2+. [ClE(µ-NTer)]2 which is subsequently used to generate [XE(µ-NTer)2E] + and [E (µ-NR) ]2+ 2 2 .
    5. 5. Synthesis of Dipictadiazanes and Dipnictadiazenium Cations• [ClE(µ-NTer)]2 from HCl elimination of RNH2 and ECl3 or RHN-ECl2. Draw out HCl emim • When E = Sb or Bi side reactions occur which lead to scheme reduced yield of [ClE(µ-NTer)]2. Yield?• Alternate route to [ClE(µ-NTer)]2 involves a distannadiazane. • Formed via metallation of a primary amine and a Sn(II) diamide. • [ClSn(µ-NTer)]2 has been reported by Power.
    6. 6. Synthesis of Dipictadiazanes and Dipnictadiazenium Cations• Reaction of pnictogen(III) chlorides with the distannadiazane yields dipnictadiazanes. • Yield for Sb species: 79%, Bi species: 68%. Reaction scheme• Addition of GaCl3 to [ClSb(µ-NTer)]2 results in the formation of [ClSb(µ-NTer)2Sb][GaCl4]. Reaction scheme
    7. 7. Synthesis of Dipictadiazanes and Dipnictadiazenium Cations• Addition of GaCl3 to [ClBi(µ-NTer)]2 yields a dark- brown solution (1H, 13C NMR suggest formation of [ClBi(µ-NTer)2Bi]+). Reaction scheme• Attempts to isolate [ClBi(µ-NTer)2Bi][GaCl4] result in decomposition. • SbCl5 and Ag[SbF6] yielded same results. • A more weekly coordinating anion was expected to help. Ag[B(C6F5)4] still resulted in decomposition.
    8. 8. Synthesis of Dipictadiazanes and Dipnictadiazenium Cations• The iodine species, [IBi(µ-NTer)]2, was expected to be more easily isolated. • [ClE(µ-NTer)]2 converted to [E(µ-NTer)]2[OTf]2 (Sb: 65%, Bi: 88%) by reaction with AgOTf • [Bi(µ-NTer)]2[OTf]2 is then transformed to [IBi(µ-NTer)]2 (68%) by reaction with Me3SiI. Reaction scheme• Reaction of [IBi(µ-NTer)]2 with Ag[B(C6F5)4] led to [IBi(µ-NTer)2Bi][B(C6F5)4]●3CH2Cl2 (46%). Reaction scheme
    9. 9. Synthesis of Dipictadiazanes and Dipnictadiazenium Cations • fffssadsre
    10. 10. • f-number
    11. 11. Tellurium–Nitrogen - Heterocyclic Chemistry Mathias Lehmann, Axel Schulz, and Alexander Villinger Angew. Chem. Int. Ed., 2012, Advance Article Universität Rostock, Institut für Chemie, Albert-Einstein-Strasse 3a,and Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert- Einstein-Strasse 29a, 18059 Rostock (Germany)
    12. 12. References1. Lehmann, Schulmanz, et. al., Angew. Chem. Int. Ed., 2012, Advance Article.2. Keat, et. al., Top. Curr. Chem., 1982, 102, 89.3. Balakrishna, Sreenivasa Reddy, et. al., Coord. Chem. Rev. 1994, 129, 1.4. Stahl, Coord. Chem. Rev., 2000, 210, 203.5. Beswick, Wright, Coord. Chem. Rev. 1998, 176, 373.6. Doyle, Riera, et. al., Eur. J. Inorg. Chem. 2003, 3279.7. Reiß, Schulz, et. al., Dalton Trans. 2010, 39, 9962.8. Burford, Cameron et. al., Inorg. Chem. 2005, 44, 8058.9. Kuhn, Scherer, Z. Naturforsch. B 1979, 34, 888.10. Haagenson, Stahl, Inorg. Chem. 2001, 40, 4491.11. Eisler, Chivers, Inorg. Chem. 2006, 45, 10734.12. Lehmann, Schulz, et. al., Eur. J. Inorg. Chem. 2010, 5501.13. Michalik, Schulz, et. al., Angew. Chem. Int. Ed. 2010, 49, 7575.14. Michalik, Schulz, et. al., Angew. Chem. Int. Ed. 2008, 47, 6465.15. Schulz, Villinger, Inorg. Chem. 2009, 48, 7359.16. Cowley, Kemp, Chem. Rev. 1985, 85, 367.17. Veith, Bertsch, Z. Anorg. Allg. Chem. 1988, 557, 7.18. Veith, Bertsch, et. al., Z. Anorg. Allg. Chem. 1988, 559, 73.19. Veith, Angew. Chem. Int. Ed. Engl. 1987, 26, 1.20. Gudat, Gans-Eichler, et. al., Chem. Commun. 2004, 2434.21. Spinney, Korobkov, et. al., Chem. Commun. 2007, 1647.

    ×