Upcoming SlideShare
×

# Mergesort without Animation

1,087 views

Published on

Understand mergesort and the working of recursion. The time and space complexity are also dealt with.

1 Like
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

Views
Total views
1,087
On SlideShare
0
From Embeds
0
Number of Embeds
23
Actions
Shares
0
37
0
Likes
1
Embeds 0
No embeds

No notes for slide

### Mergesort without Animation

1. 1. MERGE SORT - HOW RECURSION WORKS 10 4 126152 2 4 6 10 12 15 Dr.S.Lovelyn Rose PSGCollege ofTechnology Coimbatore, India
2. 2. Splitting Solve subproblems Combine solution ALGORITHM MergeSort(low,high) { if(low<high) { mid=(low+high)/2 MergeSort(low,mid) MergeSort(mid+1,high) Merge(low,mid,high) } }
3. 3. Merge(low,mid,high) { h=low; i=low; j=mid+1 while((h<=mid) and (j<=high)) { if(a[h]<=a[j]) { b[i]=a[h] h=h+1 } else { b[i]=a[j] j=j+1 } i=i+1 }//End of while temp array 2nd sub array1st sub array
4. 4. temp to original array for k=low to high a[k]=b[k] } If(h>mid) { for k=j to high { b[i]=a[k] i=i+1 } } else { for k=h to mid { b[i]=a[k] i=i+1 } }
5. 5. Recursion Order 8 3 2 9 7 1 5 4 8 3 2 9 7 1 5 4 8 3 2 9 7 1 5 4 8 3 2 9 7 1 5 4 3 8 4 51 72 9 2 3 8 9 1 4 5 7 1 2 3 4 5 7 8 9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Note :The numbers in red help to understand the order in which recursion takes place
6. 6. Formulating the Recurrence Relation T(n)=2T(n/2)+(n-1) Size of a sublist Number of sublists (n-1)  Number of times basic operation is performed when a function is called  Inside Merge() a minimum of (n-1) comparisons is performed. Eg.  If 1 element no comparison  If 2 elements->max 1 comparison  If 4 elements->3 comparisons
7. 7. Solving Recurrence MastersTheorem a=2,b=2,f(n)=n-1 log b a=1 By case 2,f(n)=Ѳ(n1 )=O(n) T(n)= Ѳ(n log n)
8. 8. By Substitution Method T(n)=2T(n/2)+(n-1) =2(2T(n/22 )+((n/2)-1))+(n-1) =22 T(n/22 )+(n-2)+(n-1) =22 (2T(n/23 )+((n/4)-1))+(2n-(1+2)) =23T (n/23 )+3n-(1+2+22 ) . . =2k T(n/2k )+kn-(1+2+…+2k-1 ) Let n=2k =2k T(1 )+n log n-(2k -1 ) =n log n-n+1 = Ѳ(n log n)
9. 9. Space Complexity = n+n = 2n = Ѳ(n) Additional array ‘b’ of size ‘n’ Input Array of size ‘n’
10. 10. My Blogs http://datastructuresinterview.blogspot.in/ http://talkcoimbatore.blogspot.in/ http://simpletechnical.blogspot.in/