CQ-IIProf. Ricardo Andreucci     Depto. de Soldagem                  Jul./08
R.Andreucci                        Controle da Qualidade II                  Ed.   Jul./2008                 1            ...
R.Andreucci                         Controle da Qualidade II                    Ed.   Jul./2008                         2 ...
R.Andreucci                            Controle da Qualidade II                    Ed.   Jul./2008                        ...
R.Andreucci                            Controle da Qualidade II                   Ed.   Jul./2008                         ...
R.Andreucci                            Controle da Qualidade II                   Ed.   Jul./2008                         ...
R.Andreucci                              Controle da Qualidade II                   Ed.   Jul./2008                       ...
R.Andreucci                            Controle da Qualidade II                 Ed.   Jul./2008                          7...
R.Andreucci                             Controle da Qualidade II                    Ed.   Jul./2008                       ...
R.Andreucci                            Controle da Qualidade II                     Ed.   Jul./2008                       ...
R.Andreucci                    Controle da Qualidade II                    Ed.   Jul./2008        10                      ...
R.Andreucci                            Controle da Qualidade II                   Ed.   Jul./2008                         ...
R.Andreucci                              Controle da Qualidade II                   Ed.   Jul./2008                       ...
R.Andreucci                             Controle da Qualidade II                   Ed.   Jul./2008                        ...
R.Andreucci                           Controle da Qualidade II                   Ed.   Jul./2008                          ...
R.Andreucci                             Controle da Qualidade II                    Ed.   Jul./2008                       ...
R.Andreucci                           Controle da Qualidade II                    Ed.   Jul./2008                       16...
R.Andreucci                                Controle da Qualidade II                    Ed.     Jul./2008                  ...
R.Andreucci                             Controle da Qualidade II                   Ed.   Jul./2008                        ...
R.Andreucci                                                 Controle da Qualidade II                                      ...
R.Andreucci                              Controle da Qualidade II                Ed.   Jul./2008                        20...
R.Andreucci                           Controle da Qualidade II                     Ed.      Jul./2008                  21 ...
R.Andreucci                            Controle da Qualidade II                   Ed.   Jul./2008                         ...
R.Andreucci                             Controle da Qualidade II                    Ed.   Jul./2008                       ...
R.Andreucci                            Controle da Qualidade II                   Ed.   Jul./2008                         ...
R.Andreucci                            Controle da Qualidade II                   Ed.   Jul./2008                         ...
R.Andreucci                           Controle da Qualidade II                   Ed.    Jul./2008                         ...
R.Andreucci                             Controle da Qualidade II                   Ed.   Jul./2008                        ...
R.Andreucci                            Controle da Qualidade II                    Ed.       Jul./2008                    ...
R.Andreucci                            Controle da Qualidade II                      Ed.       Jul./2008                  ...
R.Andreucci                             Controle da Qualidade II               Ed.   Jul./2008                          30...
R.Andreucci                                                  Controle da Qualidade II                                     ...
R.Andreucci                              Controle da Qualidade II                Ed.   Jul./2008                          ...
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Apostila end   andreucci
Upcoming SlideShare
Loading in...5
×

Apostila end andreucci

2,596

Published on

0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
2,596
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
87
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

Apostila end andreucci

  1. 1. CQ-IIProf. Ricardo Andreucci Depto. de Soldagem Jul./08
  2. 2. R.Andreucci Controle da Qualidade II Ed. Jul./2008 1 CONTEÚDO Capítulo 1....................................................... Ensaio Radiográfico Capítulo 2 ...................................................... Ensaio por Líquidos Penetrantes Capítulo 3 ..................................................... Ensaio por Ultra- Som Capítulo 4....................................................... Ensaio por Partículas Magnéticas
  3. 3. R.Andreucci Controle da Qualidade II Ed. Jul./2008 2 CAPÍTULO 1 ENSAIO RADIOGRÁFICO1.1 Fundamentos e Princípios Físicos do EnsaioDescrição Genérica do Método e Aplicações:A radiografia é um método usado para inspeção não destrutiva que baseia-se na absorção diferenciada da radiação penetrante pelapeça que está sendo inspecionada. Devido às diferenças na densidade e variações na espessura do material, ou mesmo diferenças nascaracterísticas de absorção causadas por variações na composição do material, diferentes regiões de uma peça absorverão quantidadesdiferentes da radiação penetrante. Essa absorção diferenciada da radiação poderá ser detectada através de um filme, ou através de umtubo de imagem ou mesmo medida por detetores eletrônicos de radiação. Essa variação na quantidade de radiação absorvida,detectada através de um meio, irá nos indicar, entre outras coisas, a existência de uma falha interna ou defeito no material.A radiografia industrial é então usada para detectar variação de uma região de um determinado material que apresenta uma diferençaem espessura ou densidade comparada com uma região vizinha, em outras palavras, a radiografia é um método capaz de detectar comboas sensibilidade defeitos volumétricos. Isto quer dizer que a capacidade do processo de detectar defeitos com pequenas espessurasem planos perpendiculares ao feixe, como trinca dependerá da técnica de ensaio realizado. Defeitos como vazios e inclusões queapresentam uma espessura variável em todas direções, serão facilmente detectadas desde que não sejam muito pequenos em relação àespessura da peça. Técnica Geral de Ensaio RadiográficoNatureza da Radiação Penetrante:O nome “Radiação Penetrante”se originou da propriedade de que certas formas de energia radiante possue de atravessar materiaisopacos à luz visível. Podemos distinguir dois tipos de radiação penetrante usados em radiografia industrial: os Raios X e os RaiosGama. Eles se distinguem da luz visível por possuírem um comprimento de onda extremamente curto, o que lhes dá a capacidade deatravessarem materiais que absorvem ou refletem a luz visível.Por serem de natureza semelhante à luz, os Raios X e os Raios Gama possuem uma série de propriedades em comum com a luz entreas quais podemos citar: possuem mesma velocidade de propagação (300.000 km/s), deslocam-se em linha reta, não são afetadas porcampos elétricos ou magnéticos, possuem a propriedade de impressionar emulsões fotográficas.Poderíamos citar outras propriedades comuns entre as radiações penetrantes e a luz visível. Ocorre, no entanto, que vários fenômenosque observamos na luz, são muitos difíceis de serem detectados. O fenômeno de refração, por exemplo, ocorre nas radiaçõespenetrantes, mas numa escala tão pequena que são necessários instrumentos muito sensíveis para detectá-lo. Isso explica porque aradiação penetrante não pode ser focalizada através de lentes, como acontece com a luz.
  4. 4. R.Andreucci Controle da Qualidade II Ed. Jul./2008 3No âmbito dos ensaios não destrutivos devemos salientar seis propriedades da radiação penetrante que são de particular importância:· deslocam-se em linha reta;· podem atravessar materiais opacos a luz, ao fazê-lo, são parcialmente absorvidos por esses materiais;· podem impressionar películas fotográficas, formando imagens;· provocam o fenômeno da fluorescência ;· provocam efeitos genéticos ;· provocam ionizações nos gases.Propriedades da Radiação :As propriedades das radiações eletromagnéticas, Raios X e Gama, são dependentes de seu comprimento de onda (ou energia) . Aspropriedades dos Raios X que tem importância fundamental, quando se trata de ensaios não destrutivos e são aquelas citadasanteriormente.Quanto menor o comprimento de onda, maior é a energia de radiação. Por possuírem comprimento de onda muito curto, econsequentemente alta energia, os Raios X e gama apresentam propriedades e características, que os distinguem das demais ondaseletromagnéticas. A energia das radiações emitidas tem importância fundamental no ensaio radiográfico , pois a capacidade de penetração nos materiais está asscociada a esta propriedade.Produção das Radiações X e GamaOs Raios-XAs radiações gama são aquelas que são emitidas do núcleo do átomo, o qual se encontra num estado excitado de energia, o quediferencia significativamente das radiações X, as quais são emitidas das camadas eletrônicas dos átomos. Essas emissões não ocorremdeforma desordenada, mas possuem “padrão” de emissão denominado espectro de emissão.Os Raios X, destinados ao uso industrial e médico, são gerados numa ampola de vidro, denominada tubo de Coolidge, que possui duaspartes distintas: o anodo e o catodo.O anodo e o catodo são submetidos a uma tensão elétrica da ordem de milhares de volts, sendo o polo positivo ligado ao anodo e onegativo no catodo. O anodo é constituído de uma pequena parte fabricada em tungstênio, também denominado de alvo, e o catodo deum pequeno filamento, tal qual uma lâmpada incandescente, por onde passa uma corrente elétrica da ordem de miliamperes. Esquema de um tubo de Raios X Industrial.
  5. 5. R.Andreucci Controle da Qualidade II Ed. Jul./2008 4Quando o tubo é ligado, a corrente elétrica do filamento, se aquece e passa a emitir espontaneamente elétrons que são atraídos eacelerados em direção ao alvo. Nesta interação, dos elétrons com os átomos de tungstênio, ocorre a desaceleração repentina doselétrons, transformando a energia cinética adquirida em Raios X.Outros fenômenos de interação dos elétrons acelerados com as camadas eletrônicas dos átomos de tungstênio, também sãoresponsáveis pela emissão dos Raios X.Os Raios X, são gerados nas camadas eletrônicas dos átomos por variados processos físicos. Caracteriza-se por apresentar um espectrocontínuo de emissão ao contrário das radiações gama. Em outras palavras, os Raios X emitidos pelo aparelho apresentam umavariedade muito grande de comprimento de onda ou seja que a energia varia de uma forma contínua.Equipamentos de Raios X:Os Raios X são produzidos em ampolas especiais. Os tamanhos das ampolas ou tubos são em função da tensão máxima de operaçãodo aparelho.Do ponto de vista da radiografia, uma atenção especial deve ser dada ao alvo, contido no anodo. Sua superfície é atingida pelo fluxoeletrônico, proveniente do filamento, e denomina-se foco térmico. É importante que esta superfície seja suficiente grande para evitarum superaquecimento local, que poderia deteriorar o anodo, e permitir uma rápida transmissão do calor. alvo (Tungstênio) anodo feixe de elétrons foco óptico Corte transversal do anodo direcional , na ampola de Raios XPara obter-se imagens com nitidez máxima, as dimensões do foco óptico devem ser as menores possíveis. As especificações deaparelhos geralmente mencionam as dimensões do foco óptico.O calor que acompanha a formação de Raios X é considerável, e portanto é necessário especial atenção aos sistemas e métodos pararefrigerar o anodo. Esta refrigeração pode ser feita de diversas maneiras:a) Refrigeração por irradiação: Neste caso o bloco de tungstênio, que compõe o alvo, se aquece e o calor se irradia pelo anodo.b) Refrigeração por convecção: O calor irradiado pelo anodo, se transmite ao prolongamento de cobre, o qual está imerso em óleo ougás, que se refrigera por convecção natural, ou por circulação.c) Refrigeração por circulação forçada de água: A refrigeração descrita em (b), é limitada, principalmente se o aparelho for operadocontinuamente, exposto ao sol. Neste caso, a circulação de água por uma serpentina interna à unidade geradora, é eficaz, permitindo ouso do aparelho por longos períodos de uso.Unidade Geradora, Painel de Comando:Os equipamentos de Raios X industriais se dividem geralmente em dois componentes: o painel de controle e o cabeçote, ou unidadegeradora.O painel de controle consiste em uma caixa onde estão alojados todos os controles, indicadores, chaves e medidores, além de contertodo o equipamento do circuito gerador de alta voltagem. E através do painel de controle que se fazem os ajustes de voltagem eamperagem, além de comando de acionamento do aparelho.No cabeçote está alojada a ampola e os dispositivos de refrigeração. A conexão entre o painel de controle e o cabeçote se faz atravésde cabos especiais de alta tensão.
  6. 6. R.Andreucci Controle da Qualidade II Ed. Jul./2008 5As principais características de um equipamento de Raios X são:a - tensão e corrente máxima;b - tamanho do ponto focal e tipo de feixe de radiação;c - peso e tamanho;Esses dados determinam a capacidade de operação do equipamento, pois estão diretamente ligados ao que o equipamento pode ou nãofazer. Isso se deve ao fato dessas grandezas determinarem as características da radiação gerada no equipamento. A voltagem se refereà diferença de potencial entre o anodo e o catodo e é expressa em quilovolts ( kV). A amperagem se refere à corrente do tubo e éexpressa em miliamperes (mA).Outro dado importante se refere à forma geométrica do anodo no tubo. Quando em forma plana, e angulada, propicia um feixe deradiação direcional, e quando em forma de cone, propicia um feixe de radiação panorâmico, isto é, irradiação a 360 graus, comabertura determinada.Os equipamentos considerados portáteis, com voltagens até 300 kV, possuem peso em torno de 40 a 80 kg, dependendo do modelo. Osmodelos de tubos refrigerados a gás são mais leves ao contrário dos refrigerados a óleo. Aparelhos de Raios X industrial, de até 300 kV Equipamentos de Raios X panorâmico.
  7. 7. R.Andreucci Controle da Qualidade II Ed. Jul./2008 6Aceleradores Lineares :O aceleradores lineares são aparelhos similiares aos aparelhos de Raios X convencionais com a diferença que os elétrons sãoacelerados por meio de uma onda elétrica de alta frequência, adquirindo altas velocidades ao longo de um tubo retilíneo. Os elétronsao se chocarem com o alvo, transformam a energia cinética adquirida em calor e Raios X com altas energias cujo valor dependerá daaplicação. Para uso industrial em geral são usados aparelhos capazes de gerar Raios X com energia máxima de 4 Mev.Os Betatrons são considerados como transformadores de alta voltagem o que consiste na aceleração dos elétrons de forma circular pormudança do campo magnético primário, adquirindo assim altas velocidades e consequentemente a transformação da energia cinéticaem Raios X, após o impacto destes com o alvo. Este processo podem gerar energias de 10 a 30 Mev.Os aceleradores lineares e os betatrons são aparelhos destinados a inspeção de componentes com espessuras acima de 200 mm de aço.As vantagens do uso desses equipamentos de grande porte, são:• foco de dimensões reduzidas (menor que 2 mm)• tempo de exposição reduzido• maior rendimento na conversão em Raios X Fotos de um acelerador linear LINAC - Mitsubishi, usado para radiografia industrial de peças com espessura de 20 a 300 mm de aço. (Foto cedida pela CBC Indústrias Mecânicas – São Paulo)Equipamentos de Raios Gama:Com o desenvolvimento dos reatores nucleares, foi possível a produção artificial de isótopos radioativos através de reações nuclearesde ativação.O fenômeno de ativação, ocorre quando elementos naturais são colocados junto ao núcleo de um reator e, portanto, irradiados porneutrons térmicos, que atingem o núcleo do átomo, penetrando nele. Isto cria uma quebra de equilíbrio energético no núcleo, e aomesmo tempo muda sua massa atômica, caracterizando assim o isótopo. O estabelecimento do equilíbrio energético do núcleo doátomo, é feito pela liberação de energia na forma de Raios gama.Um átomo que submetido ao processo de ativação, e portanto seu núcleo se encontra num estado excitado de energia passa a emitirradiação. É fácil ver, portanto, que o número de átomos capazes de emitir radiação ( A ), diminui gradualmente com o decorrer dotempo. A esse fenômeno chamamos de Decaimento Radioativo. A Ao decaimento radioativo Tempo Esquema do Decaimento Radioativo.
  8. 8. R.Andreucci Controle da Qualidade II Ed. Jul./2008 7Uma característica importante do Decaimento Radioativo é que ele não se processa na mesma velocidade para diferentes elementos.Por exemplo, uma amostra de Co-60 podemos dizer que os átomos se desintegram mais lentamente que no caso de uma amostra de Ir-192. Observe que a relação demonstra que o número de átomos “N” que se desintegram dentro de um certo intervalo de tempo éproporcional a “λ“, “No” e “δt”. Nessa equação a letra “λ“ representa uma grandeza denominada de Constância de Desintegração,que significa a razão que a desintegração se processa. Como vimos a Constante de Desintegração é uma característica de cadaelemento radioativo.Resolvendo a equação chegamos, então, à expressão matemática de Lei do Decaimento Radioativo: - λ.t N = No e onde No = número inicial de elétrons excitados. N = números de átomos excitados após transcorrido um certo intervalo de tempo. e = base dos logaritmo neperiano. λ = constante de desintegração, característica do material radioativo. t = tempo transcorrido.É importante observar-se, que o decaimento obedece a uma lei exponencial. Isso significa que o número “N” nunca se tornará zeroembora vá assumindo valores progressivamente menores. Em outras palavras, isso significa que um material radioativo sempre estaráemitindo alguma radiação, não importando quanto tempo tenha transcorrido desde a sua formação.Meia Vida:Quando produzimos uma fonte radioativa, colocamos em estado excitado, um certo número “No” de átomos na fonte. Vimos atravésda Lei do Decaimento Radioativo que esse número de átomos excitado diminui com o passar do tempo, segundo as características doelemento radioativo.Portanto, após passado um certo intervalo de tempo, podemos ter no material radioativo exatamente a metade do número inicial deátomos excitados.A esse intervalo de tempo, denominamos Meia - Vida do elemento radioativo. Como a taxa em que os átomos se desintegram édiferente de um elemento para outro elemento a Meia - Vida também será uma característica de cada elemento.A Meia - Vida é representada pelo símbolo “T1/2” e pode ser determinada pela seguinte equação: 0,693 T1/2 = -------- λ onde T1/2 = meia-vida do elemento. λ = constante de desintegração radioativa característico de cada radioisótopoAtividade de uma Fonte Radioativa:A atividade de um radioisótopo é caracterizada pelo número desintegrações que ocorrem em um certo intervalo de tempo. Como aatividade apresentada uma proporcionalidade com o número de átomos excitados presentes no elemento radioativo, podemos expressa-laatravés de uma fórmula semelhante à do Decaimento Radioativo , uma vez que A=λ.N, ou seja: - λ .t A = Ao . eonde Ao = atividade inicial do elemento radioativo. A = atividade do elemento radioativo após transcorrido um certo intervalo de tempo. λ = constante de desintegração. t = tempo transcorrido.Como demonstrado no Decaimento Radioativo, a atividade de um certo elemento diminui progressivamente com o passar do tempo,porém nunca se torna igual a zero.
  9. 9. R.Andreucci Controle da Qualidade II Ed. Jul./2008 8A unidade padrão de atividade é o Becquerel, que é definida como sendo a quantidade de qualquer material radioativo que sofre umadesintegração por segundo. 9 1 Bq = 1 dps. 1 GBq = 10 dps. 3 12 1 kBq = 10 dps. 1 TBq = 10 dps. 6 1 MBq = 10 dps. 10 unidade antiga :1 Curie = 3,7 x 10 dps. 10 1 Ci = 3,7 x 10 Bq = 37 GBq.As fontes usadas em gamagrafia (radiografia com raios gama), requerem cuidados especiais de segurança pois, uma vez ativadas,emitem radiação, constantemente.Deste modo, é necessário um equipamento que forneça uma blindagem, contra as radiações emitidas da fonte quando a mesma nãoestá sendo usada. De mesma forma é necessário dotar essa blindagem de um sistema que permita retirar a fonte de seu interior, paraque a radiografia seja feita. Esse equipamento denomina-se Irradiador.Os irradiadores compõe-se, basicamente, de três componentes fundamentais: Uma blindagem, uma fonte radiotiva e um dispositivopara expor a fonte.As blindagens podem ser construídas com diversos tipos de materiais. Geralmente são construídos com a blindagem, feita com umelemento (chumbo ou urânio exaurido), sendo contida dentro de um recipiente externo de aço, que tem a finalidade de proteger ablindagem contra choques mecânicos.Uma característica importante dos irradiadores, que diz respeito à blindagem, é a sua capacidade. Como sabemos, as fontes deradiação podem ser fornecidas com diversas atividades e cada elemento radioativo possui uma energia de radiação própria. Assimcada blindagem é dimensionada para conter um elemento radioativo específico, com uma certa atividade máxima determinada.Portanto, é sempre desaconselhável se usar um irradiador projetado para determinado elemento, com fontes radioativas de elementosdiferentes e com outras atividades.Esse tipo de operação só pode ser feita por elementos especializados e nunca pelo pessoal que opera o equipamento. A fonte radioativaconsta de uma determinada quantidade de um isótopo radioativo. Essa massa de radioisótopo é encapsulada e lacrada dentro de umpequeno envoltório metálico muitas vezes denominado "porta-fonte", ou fonte selada, simplesmente.O porta fonte se destina a impedir que o material radioativo entre em contato com qualquer superfície, ou objeto, diminuindo os riscosde uma eventual contaminação radioativa.Características Físicas e Tipo de Fontes Gama:As fontes radiaoativas para uso industrial, são encapsuladas em material austenítico, de maneira tal que não há dispersão ou fuga domaterial radioativo para o exterior.Um dispositivo de contenção, transporte e fixação por meio do qual a cápsula que contém a fonte selada, está solidamente fixada emuma ponta de uma cabo de aço flexível, e na outra ponta um engate, que permite o uso e manipulação da fonte, é denominado de“porta fonte”.
  10. 10. R.Andreucci Controle da Qualidade II Ed. Jul./2008 9Devido a uma grande variedade de fabricantes e fornecedores existem diversos tipos de engates de porta-fontes. 2 discos de Ir-192 , φ 3 mm x 0,25 mm mola cápsula de aço inoxidável engate cabo de aço fonte Características das fontes seladas radioativas industriaisEmbora apenas poucas fontes radiativas seladas sejam atualmente utilizadas pela indústria moderna, daremos a seguir as principaisque podem ser utilizadas assim como as suas características físico-químicas.Embora apenas poucas fontes radiotivas seladas sejam atualmente utilizadas pela indústria moderna, daremos a seguir as principaisque podem ser utilizadas assim como as suas características físico-químicas.(a) Cobalto - 60O Cobalto-60 é obtido através do bombardeamento por nêutrons do isótopo estável Co-59. Suas principais características são:• Meia - Vida = 5,24 anos• Energia da Radiação = 1,17 e 1,33 MeV• Faixa de utilização mais efetiva = 60 a 200 mm de açoEsses limites dependem das especificações técnicas da peça a ser examinada e das condições da inspeção.(b) Irídio - 192O Iridio-192 é obtido a partir do bombardeamento com nêutrons do isótopo estável Ir-191. Suas principais características são:• Meia - Vida = 74,4 dias• Energia da Radiação = 0,137 a 0,65 MeV• Faixa de utilização mais efetiva = 10 a 40 mm de aço(c) Selênio-75Suas principais características são:• Energia de Radiação: 0, 066 e 0,405 MeV.• Meia - Vida = 125 dias• Faixa de utilização mais efetiva = 4 a 30 mm de açoCaracterísticas Físicas dos Irradiadores Gama:O que mais diferencia um tipo de irradiador de outro são os dispositivos usados para se expor a fonte. Esses dispositivos podem sermecânicos, com acionamento manual ou elétrico, ou pneumático. A única característica que apresentam em comum é o fato depermitirem ao operador trabalhar sempre a uma distância segura da fonte, sem se expor ao feixe direto de radiação.
  11. 11. R.Andreucci Controle da Qualidade II Ed. Jul./2008 10 Aparelho para gamagrafia industrial. Aparelho para Gamagrafia Sauerwein, usando Fonte Radioativa de Cobalto 60 com atividade máxima de 30 Curies , pesando 120 kg , projetado com tipo de canal reto. Aparelho para gamagrafia , usando fonte radioativa de Irídio-192 com atividade máxima de 160 Ci , pesando 30 kg , projetado com tipo de canal reto
  12. 12. R.Andreucci Controle da Qualidade II Ed. Jul./2008 11Filmes Radiográficos:Os filmes radiográficos são compostos de uma emulsão e uma base. A emulsão consiste em uma camada muito fina (espessura de0,025 mm) de gelatina, que contém, dispersos em seu interior, um grande número de minúsculos cristais de brometo de prata. Aemulsão é colocada sobre um suporte, denominado base, que é feito geralmente de um derivado de celulose, transparente e de corlevemente azulada.Uma característica dos filmes radiográficos é que, ao contrário dos filmes fotográficos, eles possuem a emulsão em ambos os lados dabase.Os cristais de brometo de prata, presentes na emulsão, possuem a propriedade de, quando atingidos pela radiação ou luz, tornarem-sesusceptíveis de reagir com produto químico denominado revelador. O revelador atua sobre esses cristais provocando uma reação deredução que resulta em prata metálica negra.Os locais do filme, atingidos por uma quantidade maior de radiação apresentarão, após a ação do revelador, um número maior degrãos negros que regiões atingidas por radiação de menor intensidade, dessa forma, quando vistos sob a ação de uma fonte de luz, osfilmes apresentarão áreas mais escuras e mais claras que irão compor a imagem do objeto radiografado. Os filmes radiográficos industriais são fabricados nas dimensões padrões de : 3.1/2” x 17” ou 4.1/2” x 17” ou 14” x 17” . Outras dimensões e formatos podem ser encontrados em outros países da Europa e EUA Estrutura de um filme radiográficoGranulação:A imagem nos filmes radiográficos é formada por uma série de partículas muito pequenas de sais de prata, os quais não visíveis a olhonú. Entretanto, essas partículas se unem em massas relativamente grandes que podem ser vistas pelo olho humano ou com auxílio depequeno aumento. Esse agrupamento das partículas de sais de prata da emulsão cria uma impressão chamada de “Granulação”.Todos os filmes apresentam o fenômeno de granulação. Por possuírem grãos maiores, os filmes mais rápidos apresentam umagranulação mais acentuadas que os filmes lentos.A granulação, além de ser característica de cada filme, também sofre uma influência da qualidade da radiação que atinge o filme.Portanto, podemos afirmar que a granulação de um filme aumenta quando aumenta a qualidade da radiação. Por essa razão os filmescom grãos mais finos são recomendados quando se empregam fontes de alta energia (Raios X da ordem de milhões de volts). Quandousados com exposição longa, esses filmes também podem ser empregados com raios gama.A granulação é também afetada pelo tempo de revelação do filme. Se aumentarmos, por exemplo, o tempo de revelação, haverá umaumento simultâneo na granulação do filme. Esse efeito é comum quando se pretende aumentar a densidade, ou a velocidade, de umfilme por intermédio de um aumento no tempo de revelação. E claro que o uso de tempos de revelação pequenos resultarão em baixagranulação porém corremos o risco de obter um filme sub-revelado. É importante salientar que a granulação aumenta de acordo com oaumento de grau de revelação. Dessa forma, aumentamos no tempo de revelação que visam a compensar atividade do revelador ou atemperatura do banho, terão uma influência muito pequena na granulação do filme.Densidade Óptica.A imagem formada no filme radiográfico possui áreas claras e escuras evidenciando um certo grau de enegrecimento quedenominamos de Densidade. Matematicamente expressamos a densidade como sendo logaritmo da razão entre a intensidade de luzvisível que incide no filme e a intensidade que é transmitida e visualmente observada. Io D = log .------ I
  13. 13. R.Andreucci Controle da Qualidade II Ed. Jul./2008 12onde Io = intensidade de luz incidente I = intensidade de luz transmitidaPela relação acima concluímos que quanto maior for densidade, mais escuro será o filme. O Código ASME estabelece que radiografiasproduzidas com Raios X devem ter densidade óptica na faixa de 1,8 a 4,0 e para radiografias produzidas com Raios Gama densidadede 2,0 a 4,0.Velocidade:Antes de introduzirmos o conceito de velocidade é preciso definir o que entendemos por exposição. É uma medida da quantidade deradiação que atinge um filme. Ela é representada pelo produto da intensidade da radiação pelo tempo que o filme fica exposto. Éevidente, portanto, quanto maior a exposição a que submetemos um filme, maior a densidade que esse filme atinge. Se submetemosdois filmes diferentes a uma mesma exposição, notaremos que as densidades obtidas nos dois filmes serão diferentes. Ou seja, comuma mesma exposição, um filme apresenta maior rapidez com que um filme atinge determinada densidade, quando comparado comum outro filme. Portanto, um filme rápido necessita de menor tempo de exposição para atingir uma determinada densidade, que numoutro filme, mais lento. Ou ainda, se um filme rápido e um filme lento forem submetidos a uma exposição idêntica, o filme rápidoatingirá uma densidade maior.A velocidade é uma característica própria de cada filme. Ela depende, principalmente, do tamanho dos cristais de prata presentes naemulsão. Quanto maior o tamanho dos cristais mais rápido é o filme. É claro que uma imagem formada por grãos de grandesdimensões é mais grosseira, ou seja, menos nítida, que uma imagem formada por grãos menores. Portanto, quanto mais rápido o filme,menos nítida será a imagem formada por ele.Os filmes de grande velocidade podem ser utilizados em radiografias de peças com grandes espessuras que exigiria um tempo deexposição incompatível com a produtividade, quando utilizado filmes mais lentos.Classificação dos Filmes:A grande variedade de condições e a heterogeneidade de materiais encontrados na radiografia industrial, levaram os fabricantes aproduzir várias espécies de filmes. A velocidade de exposição é função logarítmica da dose de radiação necessária para que o filmeatinja densidade óptica de 2,0.• Tipo 1 - Características: granulação extremamente fina e muito alto contraste. Esse tipo de filme deve ser usado quando se deseja obter alta qualidade de imagem em componentes eletronicos, ligas levas. Pode ser usado em exposição direta ou com telas intensificadas.• Tipo 2 - Características: granulação ultra fina alto contraste e qualidade. Deve ser usado em ensaios de metais leves ou pesados, ou seções espessas, com radiação de alta energia. Sua granulação não é fina como a dos filmes do tipo A, mas sua maior velocidade torna-os de grande utilidade prática . É um filme ideal para ampliações ópticas.• Tipo 3 - Características: média velocidade ,alto contraste, granulação extra fina. Podem ser usados com ou sem telas intensificadoras e com radiação de alta energia.• Tipo 4 - Características: Filme com granulação muito fina e com alta velocidade e alto contraste quando utilizado em conjunto com telas intensificadoras de chumbo.Processamento do Filme Radiográfico:Preparação Inicial:A preparação do filme e dos banhos para o processamento radiográfico deve seguir algumas considerações gerais, necessárias ao bomdesempenho desta tarefa.• Limpeza: mo manuseio do filme, a limpeza é essencial. A câmara escura, bem como os acessórios e equipamentos, devem ser mantidos rigorosamente limpos, e usados somente para o propósito aos quais eles se destinam. Qualquer líquido de fácil volatilização deve estar acondicionado em recipientes fechados, para não contaminar o ambiente. O termômetro e outros acessórios que manuseados devem ser lavados em água limpa imediatamente após o uso, para evitar a contaminação das soluções. Os tanques devem estar limpos e preenchidos com soluções frescas.
  14. 14. R.Andreucci Controle da Qualidade II Ed. Jul./2008 13• Preparação dos banhos: a preparação dos banhos devem seguir a recomendação dos fabricantes, e preparados dentro dos tanques que devem ser de aço inoxidável ou da matéria sintética, sendo preferível o primeiro material. É importante providenciar agitação dos banhos, utilizando pás de borracha dura ou aço inxidável ou ainda de material que não absorva e nem reaja com as soluções do processamento. As pás devem ser separadas, uma para cada banho, para evitar a contaminação das soluções.• Manuseio: após a exposição do filme, o mesmo ainda se encontra dentro do porta-filmes plástico, e portanto deverá ser retirado na câmara escura, somente com a luz de segurança acinada. Nesta etapa os filmes deverão ser fixados nas presilhas das colgaduras de aço inxidável para não pressionar o filme com o dedo, que poderá manchá-lo permanentemente.• Controle da temperatura e do tempo: os banhos de processamento e a revelação devem ser controlados, quanto a temperatura. Normalmente devem estar de acordo com a recomendação do fabricante.Processamento Manual:A partir do momento que temos um filme exposto à radiação e passamos então ao processamento, o mesmo passará por uma série debanhos nos tanques de revelação, após o descrito acima , deverá ser feitas as seguintes etapas:• RevelaçãoQuando imergimos um filme exposto no tanque contendo o revelador, esta solução age sobre os cristais de brometo de prata metálica,por ação do revelador. Esta seletividade está na capacidade de discriminar os grãos expostos dos não expostos. Devido a fatoreseletroquímicos as moléculas dos agentes reveladores atingem os cristais, que ficam como que revestidos. Os cristais, que são +constituídos de íons, ganham elétrons do agente revelador, que se combinam com o íon “Ag ”, neutralizando-o, tornando “Agmetálica”. Essa reação química provoca uma degradação progressiva do revelador que é lentamente oxidado pelo uso e pelo meioambiente.A visibilidade da imagem e consequentemente o contraste, a densidade de fundo e a definição, dependem do tipo de revelador usado,do tempo de revelação e da temperatura do revelador. Desta forma, o controle tempo-temperatura é de fundamental importância parase obter uma radiografia de boa qualidade.O grau de revelação é afetado pela temperatura da solução: Quando a temperatura aumenta o grau de revelação também aumenta.Desta forma, quando a temperatura do revelador é baixa, a reação é vagarosa e o tempo de revelação que fora recomendado para atemperatura normal (200C), será insuficiente resultando em uma “sub-revelação”. Quando a temperatura é alta, a “sobre-revelação”.Dentro de certos limites, estas mudanças no grau de revelação podem ser compensadas aumentando-se ou diminuindo-se o tempo derevelação. São fornecidas, inclusive, tabelas tempo-temperatura, através das quais pode-se a correção de comparação.A revelação deve ser feita com agitação permanente do filme no revelador, afim de que se obtenha uma distribuição homogênea dolíquido em ambos os lados da emulsão, evitando-se a sedimentação do brometo e outros sais que podem provocar manchassusceptíveis de mascarar possíveis descontinuidades.Em princípio, o revelador deveria somente reduzir os cristais de haletos de prata que sofrem exposição durante a formação da imagemlatente. Na realidade, os outros cristais, embora lentamente, também sofrem sofrem redução.Chama-se “Véu de fundo” o enegrecimento geral resultante , que deve ser sempre mínimo para otimizar a qualidade da imagemradiográfica.• Banho Interruptor ou Banho de Parada.Quando o filme é removido da solução de revelação, uma parte revelador fica em contato com ambas as faces do filme, fazendo dessaforma que a reação de revelação continue. O banho interruptor tem então, a função de interromper esta reação a partir da remoção dorevelador residual, evitando assim uma revelação desigual e prevenindo ainda a ocorrência de manchas no filme.Portanto, antes de se transferir o filme do tanque de revelação para o de fixação, deve-se usar o tanque do banho interruptor, agitando-o durante mais ou menos 40 segundos.O banho interruptor pode ser composto, na sua mistura, de água com ácido acético ou ácido glacial. Neste último caso, deve-se tercuidado especial, prevendo-se uma ventilação adequada e evitando-se tocá-lo com as mãos. Quando se fizer a mistura com água e nãoao contrário, pois poderá respingar sobre as mãos e face causando queimaduras.
  15. 15. R.Andreucci Controle da Qualidade II Ed. Jul./2008 14O banho interruptor perde o seu efeito com o uso e deve ser sempre substituído. Uma solução nova do banho interruptor é de coramarela e quando vista sob a luz de segurança é quase incolor. Quando a cor se modifica para azul púrpura que aparece escuro sob ailuminação de segurança, a solução deve ser trocada. Geralmente 20 litros, de banho de parada são suficientes para se revelar 400filmes de 3 ½ x 17 pol.• FixaçãoApós o banho interruptor, o filme é colocado em um terceiro tanque, que contém uma solução chamada de “fixador”. A função dafixação é remover o brometo de prata das porções não expostas do filme, sem afetar os que foram expostos à radiação. O fixador temtambém a função de endurecer a emulsão gelatinosa, permitindo a secagem ao ar aquecido.O intervalo do tempo entre o início da fixação até o desaparecimento da coloração amarelo-esbranquiçada que se forma sobre o filme,é chamada de tempo de ajuste ou tempo de definição (clearing time). Durante este tempo o fixador estará dissolvendo o haleto deprata não revelado. Este tempo, é em geral o dobro do tempo de clareamento.O tempo de fixação normalmente não deve exceder a 15 minutos. Os filmes devem ser agitados quando colocados no reveladordurante pelo menos 2 minutos, a fim de que tenhamos uma ação uniforme dos químicos.O fixador deve ser mantido a uma temperatura igual ao do revelador, ou seja, cerca de 20 graus Celsius. Os fixadores sãocomercialmente fornecidos em forma de pó ou líquido e a solução é formada através da adição de água de acordo com as instruçõesdos fornecedores.• Lavagem dos Filmes.Após a fixação, os filmes seguem para o processo de lavagem para remover o fixador da emulsão. O filme é imergido em águacorrente de modo que toda superfície fique em contato constante com a água corrente. O tanque de lavagem deve ser suficientementegrande para conter os filmes que passam pelo processo de revelação e fixação, sendo que devemos prever uma vazão de água de demaneira que o volume do tanque seja de 4 a 8 vezes renovado a cada hora. Cada filme deve ser lavado por um periódo deaproximadamente 30 minutos. Quando se imergem as colgaduras carregadas no banho de lavagem, deve ser adotado um procedimentotal que se as mesmas sejam primeiramente colocadas próximas ao dreno de saída (água mais suja) e sua posição vá mudando o tempode lavagem de maneira que se termine o banho o mais próximo possível da região de entrada da água, onde a mesma se encontra maislimpa.A temperatura da água no tanque de lavagem é um fator muito importante. Os melhores resultados são obtidos com a temperatura porvolta de 20 graus centígrados. Se tivermos altos valores para a mesma, poderemos causar efeitos danosos ao filme, assim como valoresbaixos poderão reduizir a eficiência.Além das etapas acima relatadas, é aconselhável, após a lavagem passar os filmes durante mais ou menos 30 segundos, por um quintobanho que tem a finalidade de quebrar a tensão superficial da água, facilitando desta maneira, a secagem e evitando que pequenasgotas de água fiquem presas á emulsão, o que iria acarretar manchas nos filmes depois de secos.Antes do filme ser colocado no secador, deve-se dependurar as colgaduras em um escorredor por cerca de 2 a 3 minutos.Processamento Automático:Este sistema de processamento químico e mecânico é utilizado quando há grande volume de trabalho, pois só assim torna-seeconômico. O processamento é inteiramente automático sendo que a mão-de-obra só é utilizada para carregamento e descarregamentode filmes. O ciclo de processamento é inferior a 15 minutos. Quando adequadamente mantido e operado, este equipamento produzradiografia de alta qualidade.A alta velocidade de processamento torna-se possível pelo uso de soluções químicas especiais, contínua agitação dos filmes,manutenção da temperatura das soluções e secagem por jatos de ar aquecido.
  16. 16. R.Andreucci Controle da Qualidade II Ed. Jul./2008 15 Processadora Automática típica para filmes radiográficos. (Foto extraída do catálogo da AGFA)Telas Intensificadoras de ImagemTelas de chumbo:As telas de chumbo também chamados de telas intensificadoras possuem como finalidade diminuir o tempo de exposição em ensaiosradiográficos industriais, usam-se finas folhas de metal (geralmente chumbo) com intensificadoras da radiação primária emitida pelafonte. O fator de intensificação, além de ser função da natureza e da espessura da tela, depende do contato efetivo entre elas e o filme.As telas intensificadoras de chumbo geralmente são colocadas sobre cartolina com espessura da ordem de 100 gramas por centímetroquadrado. Essa cartolina deve ter espessura constantes para evitar que qualquer falta de homogeneidade prejudique a qualidade daradiografia.A tela intensificadora de chumbo precisa ter uma espessura ideal para determinada energia da radiação incidente, pois, caso contrário,a eficiência dela será reduzida.A atenuação da intensidade da radiação primária em uma tela intensificadora de chumbo será insignificante, desde que esta tela tenhaa espessura ideal que deve ser igual ao alcance dos elétrons emitidos pela folha de chumbo. Os elétrons que são emitidos por uma facedevem atingir a face oposta e consequentemente o filme produzindo ionização adicional na emulsão fotográfica. Quando se aumenta aespessura da tela de chumbo, a radiação primária e os elétrons emitidos pela face oposta dessa tela sofrem atenuação, e emconsequência o fator de intensificação diminui.O grau de intensificação das telas de chumbo depende da natureza e espessura do material a ensaiar, da qualidade da fonte emissorade radiação e do tipo de filme usado.As funções das telas intensificadoras de chumbo em radiografia industrial devem ser as seguintes:• gerar elétrons por efeito fotoelétrico ou Compton, produzindo fluxo adicional de radiação e diminuindo o tempo de exposição;• absorver ou filtrar a radiação secundária espalhada que pode atingir o filme radiográfico, borrando a imagem e empobrecendo a definição.Os Chassis IndustriaisO chassis para armazenar o filme para a exposição é fabricado na forma de um envelope plástico duplo reforçado, flexível paraacompanhar a curvatura ou irregularidades da peça a ser inspecionada. Os tamanhos padrão são iguais aos dos filmes.Dentro chassis é inserido as telas intensificadoras de imagem e no meio o filme. O chassis é fechado com fita adesiva para evitar aentrada de luz. Identificações de chumbo sobre o objeto que será radiografado podem ser fixados sobre ele.
  17. 17. R.Andreucci Controle da Qualidade II Ed. Jul./2008 16 Chassis plástico flexível típico industrial tamanho 4,5 x 8,5 polegadasParâmetros Específicos do Ensaio RadiográficoPrincípios Geométricos:Suponhamos uma fonte emissora de radiação com diâmetro F, muito pequeno, que pode, para efeitos didáticos, ser considerado umponto. Neste caso, colocando-se um objeto entre o foco puntiforme e um filme radiográfico teríamos uma imagem muito nítida. Seaumentarmos o diâmetro do foco para o valor F e o aproximarmos do objeto, obteremos uma imagem no filme (depois de revelado)com uma zona de penumbra, perdendo essa imagem muito da sua nitidez (definição) .Na prática, deve-se levar em conta que a fonte radioativa possui dimensões compreendidas entre 1 mm e 7 mm de tamanho,dependendo da natureza e atividade do radioisótopo . Quando a distância fonte-filme for muito pequena, para efeito de cálculo depenumbra, é impossível considera-la como um ponto. A ampliação é problema de geometria ,e a nitidez ou definição é função da fonteemissora de radiação e da posição do material situado entre a fonte e o filme. Quando a fonte possui diâmetro considerável ou estámuito próxima do material, a sombra ou imagem não é bem definida.A forma de imagem poderá ser diferente da que tem o material se o ângulo do plano do material variar em relação aos raiosincidentes, produzindo neste caso uma distorção da imagem.Para obtenção de imagens bem definidas ou próximas da fonte e tamanho do objeto, devemos ter:• o diâmetro da fonte emissora de radiação deve ser o menor possível;• a fonte emissora deve estar posicionada o mais afastado possível do material a ensaiar;• o filme radiográfico deve estar mais próximo do material;• o feixe de radiação deve se aproximar o mais possível, da perpendicularidade em relação ao filme;• o plano do material e o plano do filme devem ser paralelos.A distorção da imagem não pode ser totalmente eliminada em virtude dos formatos complicados das peças e dos ângulos de que sedispõem para a realização do ensaio radiográfico. fonte objeto penumbra Disposição Geométrica entre fonte-filme-objeto.
  18. 18. R.Andreucci Controle da Qualidade II Ed. Jul./2008 17Cálculo da Distância Mínima Fonte-Objeto , Sobreposição entre Filmes:A penumbra geométrica pode ser calculada pela seguinte expressão: Fx t D= ---------- Ug onde: Ug = penumbra geométrica máxima aceitável, ver tabela no ASME Art. 2 abaixo F = dimensão do ponto focal t = espessura do objeto D = distância da fonte ao objeto. Tabela de Penumbra Máxima Aceitável Espessura do material Valor máx. da penumbra polegadas (mm) polegadas (mm) abaixo de 2 (51 mm) 0,020 (0,51 mm) de 2 até 3 (75 mm) 0,030 (0,76 mm) acima de 3 até 4 (100mm) 0,040 (1,02 mm) maior que 4 (100 mm) 0,070 (1,78 mm) Conf. ASME Sec. V Art. 2A inspeção radiográfica de objetos planos, tal como juntas soldadas de topo a serem radiografadas totalmente, requerem cuidadosespeciais quanto a distância fonte-filme, pois nesses casos se essa distância for muito pequena seções da solda poderão não serinspecionadas.Sobreposição e Marcadores de Posição:Quando o objeto radiografado for plano ou quando a distância fonte-filme for menor que o raio de curvatura da peça, a sobreposiçãodeverá ser calculada pela fórmula: Cxe S = --------- + 6 mm Dff A sobreposição correta permite que o volume de solda seja totalmente onde: S = Sobreposição (mm) inspecionado. Na prática , a análise da C = Comprimento do filme (mm) imagem dos marcadores de posição na e = Espessura da peça (mm) radiografia , indica se este procedimento Dff =Distância fonte-filme (mm) foi adequado. Sobreposição entre filmes para a cobertura total.
  19. 19. R.Andreucci Controle da Qualidade II Ed. Jul./2008 18Controle da Sensibilidade Radiográfica:Indicadores da Qualidade da Imagem - IQIs (Penetrametros):Para que possamos julgar a qualidade da imagem de uma certa radiografia são empregadas pequenas peças chamadas Indicadores deQualidade de Imagem (IQI), e que são colocadas sobre o objeto radiografado. Os IQIs são também chamados como “Penetrametros”.O IQI é uma pequena peça construída com um material radiograficamente similar ao material da peça ensaiada, com uma formageometricamente simples e que contem algumas variações de forma bem definidas tais como furos ou entalhes.IQI ASME e ASTM.Os IQI’s americanos mais comuns consistem em uma fina placa de metal contendo três furos com diâmetros calibrados. Os IQIsadotados pela Normas ASME, Sec V e ASTM E-142, possuem três furos cujos diâmetros são 4T, 2T, e 1T, onde “T” corresponde àespessura do IQI. Nesses IQIs, a espessura é igual a 2 % da espessura da peça a ser radiografada .Para avaliar a técnica radiográfica empregada, faz-se a leitura do menor furo, que é visto na radiografia. As classes de inspeção maisrigorosas são aquelas que requerem a visualização do menor furo do IQI. Dessa forma, é possível se determinar o nível de inspeção,ou seja, o nível mínimo de qualidade especificado para o ensaio. O nível de inspeção é indicado por dois números em que o primeirorepresenta a espessura porcentual do IQI e o segundo o diâmetro do furo que deverá ser visível na radiografia. 35 4T 1T 2T T IQI ASME ou ASTM tipo FurosEsses IQIs devem ser colocados sobre a peça ensaiada, com a face voltada para a fonte e de modo que o plano do mesmo seja normalao feixe de radiação.Quando a inspeção for feita em soldas, o IQI será colocado no metal de base, paralelo à solda e a uma distância de 3 mm no mínimo.No caso de inspeção de solda, é importante lembrar que a seleção do IQI inclui o reforço, de ambos os lados da chapa.Portanto, para igualar a espessura sob o IQI à espessura da solda, deverão ser colocados calços sob o IQI feitos de materialradiograficamente similar ao material inspecionado. Para efeito da determinação da área de interesse não devem ser considerados osanéis ou tiras de cobre-junta caso existam.Sempre que possível, o IQI deverá ser colocado no lado da peça, voltado para a fonte. Caso isso não seja possível, o IQI poderá sercolocado no lado voltado para o filme, sendo nesse caso acompanhado de uma letra “F”, de chumbo.Em radiografia de componentes cilíndricos (tubos, por exemplo) em que são expostos mais de um filme por sua vez, deverá sercolocado um IQI por radiografia. Apenas no caso de exposições panorâmicas, em que todo o comprimento de uma junta circunferencialé radiografado com uma única exposição, é permitida a colocação de três IQI igualmente espaçados. A disposição em círculo de umasérie de peças iguais, radiografadas simultâneamente, não é considerada como panorâmica para efeito de colocação de IQI, sendonecessário que a imagem do mesmo apareça em cada uma das radiografias.
  20. 20. R.Andreucci Controle da Qualidade II Ed. Jul./2008 19 Quando porções de solda longitudinal forem radiografadas simultâneamente com a solda circuferêncial, IQI adicionais devem ser colocados nas soldas longitudinais, em suas extremidades mais afastadas da fonte. Para componentes esféricos, onde a fonte é posicionada no centro do componente e mais de um filme é exposto simultâneamente deverão ser usados, pelo menos 3 IQI’s, igualmente espaçados, para cada 360 graus de solda circunferêncial mais um IQI adicional para cada outro cordão de solda inspecionado simultâneamente. Seleção do IQI ASME em função da Espessura do Material IQI – Tipo Furos e Tipo Fios Espessura do material Lado Fonte Lado Filme (mm) (pol.) Nº Furo Arame Nº Furo Arame * * essencial essencial essencial essencial 6,4 0.25 12 2T 5 10 2T 4 > 6,4 ≤ 9,5 >0.25 ≤ 0.375 15 2T 6 12 2T 5 >9,5 ≤ 12,7 >0.375 ≤ 0.50 17 2T 7 15 2T 6 >12,7 ≤ 19,0 >0.50 ≤ 0.75 20 2T 8 17 2T 7 >19,0 ≤ 25,4 >0.75 ≤ 1.00 25 2T 9 20 2T 8 >25,4 ≤ 38,1 >1.00 ≤ 1.50 30 2T 10 25 2T 9 >38,1 ≤ 50,8 >1.50 ≤ 2.00 35 2T 11 30 2T 10 >50,8 < 63,5 > 2,00 < 2,50 40 2T 12 35 2T 11 >63,5 < 101,6 >2,50 < 4,00 50 2T 13 40 2T 12 >101,6 < 152,4 >4,00 < 6,00 60 2T 14 50 2T 13 Fonte: Código ASME Sec. V , Artigo 2 , Tab. T-276 IQI ASTM DE FIOS A norma ASTM E- 747 descreve um tipo de IQI denominado tipo fios, que trata de um conjunto de 5 fios de material similar ao do material a ser radiografado com diâmetros diferentes , desde o mais fino até o mais grosso, selados em um envelope plástico transparente, contendo identificações e informações sobre o IQI. O IQI deve ser colocado sobre a área de interesse ,no caso de soldas os fios devem estar aproximadamente perpendiculares ao cordão de solda. A seleção do IQI deve ser feita com base na espessura a ser radiografada , verificando qual o fio essencial que deverá ser visualizado na radiografia, conforme a tabela.1 (0,0032”) A S T M 6 (0,010”) 6 (0,010”) A S T M 11 (0,032”) 11 (0,032”) A S T M 16 (0,100”) 5 (0,008”) 10 (0,025”) 15 (0,080”) 2 (0,004”) 1 A 01 7 (0,013”) 1 B 03 12 (0,040”) 1 C 10 3 (0,005”) 4 (0,0063”) 8 (0,016”) 9 (0,020”) 13 (0,050”) 14 (0,063”) Alguns tipos mais usados de IQIs ASME ou ASTM tipo fios, para aço carbono. Os números indicam os diâmetros dos fios em polegadas, as letras "A", "B" e "C" identificam o conjunto de fios ou o próprio IQI
  21. 21. R.Andreucci Controle da Qualidade II Ed. Jul./2008 20O IQI, sempre que possível, deve ser colocado sobre a peça voltado para a fonte. Deve ser colocado sobre a solda de forma que osarames estejam perpediculares à linha da solda, e de forma que sua imagem apareça na zona central da radiografia. linha de solda Uso do IQI ASTM tipo fios, numa junta soldada com reforço esmerilhadoO número da qualidade de imagem é o número do arame mais fino visível na radiografia. O número de qualidade de imagemrequerido, é dfinido para para cada faixa de espessura de material. A classe de qualidade de imagem é função do rigor com que ainspeção deve ser feita e deve ser especificado pelo fabricante ou projetista do equipamento.IQI TIPO FIOS CONFORME EN-462-1O IQI fabricado conforme a norma EN-462 Part 1, é constituído por 7 arames, dispostos paralelamente, cujo material éradiograficamente similar ao material ensaiado.A relação entre o diâmetro do arame e seu número respectivo é descrito na norma indicada. Os arames foram divididos em quatrogrupos, a saber: W1 a W7, W6 a W12 e W10 a W16 e W13 a W19. A letra "W" do inglês "wire", significa tipo fios. Quanto maior onúmero, menor seu diâmetro, o que determina os níveis de qualidade especificado na tabela 4. Cada IQI se caracteriza pelas identificações : Ex. 10 FE EN (ver fig. ao lado) - a norma EN 462-1 - o fio mais grosso - W10 - a abreviatura do material do arame, no exemplo- FE. A identificação completa, como descrita acima, pode ser abreviada como por exemplo: W 10 FE. O IQI EN-462 . O IQI deve ser colocado sobre a solda ou área de interesse, com o fio essencial na mesma direção do eixo principal de radiação, para garantir maior sensibilidade possível. Em geral a projeção do fio essencial mais fino requer
  22. 22. R.Andreucci Controle da Qualidade II Ed. Jul./2008 21 IQI conforme a norma EN-462 Parte 1 (antiga DIN 54109 Part 1)Cálculo do tempo de Exposição do Filme Radiográfico:Curvas de exposição para gamagrafia.O tipo mais comum de curva de exposição é o que correlacona o fator de exposição com a atividade da fonte, tempo de exposição edistância fonte-filme. Numericamente, o fator de exposição é representado pela formulação: A.t FE = --------- 2 donde: FE = fator de exposição; A = atividade da fonte em milicuries; t = tempo de exposição em minutos; d = distância fonte-filme em centímetros. (1) (2) Filme : Classe 1 Fonte: (1) Selelium -75 (2) Irídio-192 Densidade: 2,0 Ecrans: de Pb Revelação: 8 min. Fator de Exposição para Selenium-75 e Ir-192 , para aços
  23. 23. R.Andreucci Controle da Qualidade II Ed. Jul./2008 22Exemplo de aplicação:Suponhamos, que se realiza um ensaio, por gamagrafia, de uma chapa de aço, com 1,5 cm de espessura para obter uma densidaderadiográfica de 2,0. Para este ensaio dispõe-se de uma fonte de Ir-192 com atividade 20 Ci e filme Tipo 1.Pelo gráfico de exposição conclui-se que para 1,5 cm de espessura de aço, na densidade radiográfica de 2,0, corresponde um fator deexposição igual a 50. Lembrando que 20 Ci correspondem a 20.000 milicuries.Tem-se: 20.000 x t 50 = -------------- 2 dObserva-se que podemos fixar uma das duas variáveis, tempo de exposição ou distância fonte-filme.Quando o tempo de exposição é não muito importante, pode-se escolher uma distância fonte-filme adequada, para melhorar aqualidade radiográfica. Supondo que a distância fonte-filme é 60 cm, tem-se: 20.000 x t 50 = -------------- 3600 t = 9,0 minutosExistem outras formas de calcular o tempo de exposição para fontes radioativas, utilizando as curvas de exposição Curies-hora eEspessura de Aço, nessas curvas figuram várias retas representando diferentes densidades radiográficas e elas só podem ser realmenteeficientes quando forem obedecidas as condições de revelação, de telas intensificadoras e tipo de filme.Quando for muito pequena ou muito grande a distância fonte-filme utilizada na construção da curva de exposição pode-se alterá-lalevando em conta a lei do inverso do quadrado da distância.Para a determinação de um tempo de exposição é necessário, primeiramente a espessura da peça a ensaiar. A seguir, escolhe-se afonte radioativa e o filme mais apropriado para esse isótopo.Determina-se a atividade da fonte radioativa na hora do ensaio e fixa-se a distância fonte-filme. A seguir, escolhe-se a densidaderadiográfica e determina-se o tempo de exposição. Pode ocorrer, e na prática de fato ocorre muitas vezes, que o tempo de exposiçãocalculado não é adequado porque o fabricante mudou as características de seus filmes, ou porque elas variam de lote para outro. Emqualquer desses casos, só a experiência prática ensinará introduzir modificações oporturnas. Fator de Exposição para Co-60 , para aços
  24. 24. R.Andreucci Controle da Qualidade II Ed. Jul./2008 23Curvas de exposição para Raios X.O primeiro fator a ser determinado em uma exposição com Raios X, é a voltagem (energia) a ser usada. Essa voltagem deverá sersuficiente para assegurar ao feixe de radiação energia suficiente para atravessar o material a ser inspecionado. Por outro lado, umaenergia muito alta irá causar uma diminuição no contraste do objeto, diminuindo a sensibilidade da radiografia. De forma a tornarcompatíveis esses dois fatores, foram elaborados gráficos que mostram a máxima voltagem a ser usada para cada espessura de umdade material. É muito imporante lembrar que, como materiais diferentes absorvem quantidades diferentes de radiação, existemgráficos para cada tipo de material a ser radiografado.É importante notar que cada gráfico fixa uma série de fatores como segue:- material inspecionado- tipo e espessura das telas- densidade óptica do filme- distância do foco-filme- tipo de filme usado- tempo e temperatura de revelação do filmeSe qualquer um desses fatores for alterado, o gráfico perderá a sua validade, fornecendo resultados imprecisos. Outro fator importante,é que esses gráficos só são válidos, também, para um determinado aparelho.Normalmente, os aparelhos de Raios X, são fornecidos com uma série de gráficos que permitem a sua utilização em uma vasta gamade situações.A escolha da miliamperagem e ou do tempo de exposição, prende-se à capacidade do aparelho, usando-se o que for maisconveniente.O cálculo do tempo de exposição de filmes para aparelhos de Raios-X pode ser calculado com auxílio do gráfico fornecido pelofabricante do aparelho ou do filme. Curva de Exposição para Raios X , direcional, para aços carbono. A distância fonte-filme é fixada em 700 mm (Extraído do catalogo da AGFA )
  25. 25. R.Andreucci Controle da Qualidade II Ed. Jul./2008 24Avaliação da Qualidade da ImagemIdentificação do Filme:Na identificação do filme deve conter informações importantes tais como: data do ensaio, identificação dos soldadores, no caso dejuntas soldadas, identificação da peça e local examinado, número da radiografia, identificação do operador e da firma executante.Todas essas informações devem aparecer claramente no filme radiográfico, para permitir a rastreabilidade do ensaio. Tais informaçõespoderão ser feitas a partir de letras e números de chumbo dispostos sobre o porta-filmesexposto juntamente com o filme registrando-o de modo permanente. Poderá também ser utilizado o sistema de telas fluorescentes queconsiste em escrever no papel vegetal ou similiar toda a identificação do filme e o mesmo colocado junto a tela fluorescente. Esteconjunto é montado previamente junto ao filme radiográfico entre a tela trazeira, na câmara escura, e posteriormente exposto,registrando de modo permanente no filme, toda a identificação.Determinação da Densidade Radiográfica:A densidade óptica deve ser medida a partir de aparelhos eletrônicos (densitômetro), ou fitas densitométricas calibradas,especialmente feitas para esta tarefa. A densidade deve ser sempre medida sobre área de interesse, por exemplo, sobre a imagem docordão de solda, no caso de juntas soldadas, e o valor numéricamente é normalmente recomendado uma faixa de 1,8 até 4,0 , sendoque a faixa mais usual e aceitável pelas principais normas e especificações, é de 2,0 a 3,5. Procedimentos para calibração dodensitômetro e da fita densitométrica deverão ser previstos.Análise do IQI:O indicador de qualidade da imagem ou IQI, deve aparecer na radiografia de maneira clara que permita verficar as seguintesinformações: se o número do IQI está de acordo com a faixas de espessura radiografada, se o tipo de IQI está de acordo com a normade inspeção, se o furo ou arame essencial são visíveis sobre a área de interesse, se o posicionamento foi corretamente feito, efinalmente em se tratando do IQI ASME ou ASTM, se a densidade no corpo do IQI está próxima a da área de interesse.Defeitos de Processamento do Filme:O trabalho em câmara escura após a exposição do filme corresponde a parte mais importante do processo radiográfico, pois casoocorram falhas técnicas durante o processamento do filme, todo o serviço de preparação de exposição do filme será perdido. Taisfalhas ocorrem na maioria dos casos por manuseio inadequado do filme nesta fase e podem resultar em:• ManchasGeralmente aparecem em forma arredondada que no caso esteja sobre a área de interesse poderá mascarar descontinuidadesinaceitáveis. Tais manchas decorrem de pequenas gotas de água que é visível no filme somente contra a luz.• RiscosGeralmente ocorrem por ação mecânica sobre a película superficial do filme, decorrente da sua manipulação durante a preparação eprocessamento. Tais riscos, visíveis sobre filme contra a luz, confundem-se com trincas, sendo assim inaceitáveis, devendo o filme serrepetido.• DobrasAssim como os riscos as dobras aparecem no filme como imagens escuras e bem pronunciadas, também decorrentes do manuseio dofilme antes e durante a exposição. Por exemplo podem ocorrer com frequência em peças curvas, com raios pequenos, em que ooperador para manter o porta-filme junto a peça deve força-lo a acompanhar a superfície, resultando aí uma dobra no filme que seráobservada após seu processamento.
  26. 26. R.Andreucci Controle da Qualidade II Ed. Jul./2008 25Técnicas de Exposição Radiográfica:As disposições e arranjos geométricos entre a fonte de radiação, a peça, e o filme, devem seguir algumas técnicas especiais tais quepermitam uma imagem radiográfica de fácil interpretação e localização das descontinuidades rejeitadas. Algumas destas técnicas queapresentamos a seguir são largamente utilizadas e recomendadas por normas e especificações nacionais e internacionais.Técnica de Parede Simples (PSVS):Essa técnica é assim chamada pois no arranjo entre a fonte de radiação, peça e filme, somente a secção da peça que está próxima aofilme será inspecionada e a projeção será em apenas uma espessura do material. É a principal técnica utilizada na inspeçãoradiográfica, e a mais fácil de ser interpretada. FILMES Fonte FONTE (A) FILME FONTE (B) (C) FILMES Técnica de exposição parede simples - vista simplesExposição Panorâmica:Esta técnica constitui um caso particular da técnica de parede simples vista simples descrita acima , mas que proporciona altaprodutividade em rapidez num exame de juntas soldadas circulares com acesso interno.Na técnica panorâmica a fonte de radiação deve ser centralizada no ponto geométrico eqidistante das peças e dos filmes, ou no caso dejuntas soldadas circulares a fonte deve ser posicionada no centro da circunferência. Com isso numa única exposição da fonte, todos osfilmes dipostos a 360 graus serão igualmente irradiados, possibilitando assim o exame completo das peças ou das juntas. Técnica Radiográfica Panorâmica
  27. 27. R.Andreucci Controle da Qualidade II Ed. Jul./2008 26Técnica de Parede Dupla :Técnica de Parede Dupla Vista Simples (PDVS):Nesta técnica de parede dupla vista simples , o feixe de radiação, proveniente da fonte, atravessa duas espessuras da peça,entretanto projeta no filme somente a secção da peça que está mais próxima ao mesmo .Frequentemente esta técnica é utilizada em inspeções de juntas soldadas, as quais não possuem acesso interno, porexemplo tubulações com diâmetros maiores que 3.½ polegadas (89 mm), vasos fechados, e outros. Fonte Fonte Tubo Tubo Tubo Filme Filme (A) ( B) Técnica de exposição parede dupla-vista simples (A) e parede dupla-vista dupla (B)Técnica de Parede Dupla Vista Dupla (PDVD)Neste caso o feixe de radiação proveniente da fonte, também atravessa duas espessuras, entretanto projetará no flme a imagem deduas secções da peça, e serão objetos de interesse.A técnica de parede dupla e vista dupla (PDVD) é frequentemente usada para inspeção de juntas soldadas em tubulações comdiâmetros menores que 3.½ polegadas.Descontinuidades Internas em Juntas Soldadas.• Inclusão Gasosas (Poros).Durante a fusão da solda, pode haver o aprisionamento da mesma, devido a várias razões como o tipo de eletrodo utilizado, máregulagem do arco, deficiência na técnica do operador, umidade etc. Estas inclusões gasosas podem ter a forma esférica ou cilíndrica.Sua aparência radiográfica é sob a forma de pontos escuros com o contorno nítido. Algumas destas inclusões gasosas assumem umaforma alongada, cilindrica e sua imagem radiográfica vai depender de uma orientação em relação ao feixe de radiação incidente. Outraforma típica de inclusão é aquela que tem a aparência de um galho ramificado, chamada, também, de porosidade Vermiforme. Radiografia de solda contendo porosidade e falta de fusão
  28. 28. R.Andreucci Controle da Qualidade II Ed. Jul./2008 27• Inclusão de Escória.São devidas ao aprisionamento de escória ou materiais estranhos durante o processo de soldagem. Elas apresentam-se com maisfrequência em soldas de passes múltiplos, principalmente quando a limpeza não é bem efetuada entre um passe o outro. Aparência radiográfica de soldas contendo inclusões de escória.• Inclusão de Escória em Linha.Inclusões de Escória em Linha, ou “Linha de Escória” é caso particular de inclusão, que se manifesta radiograficamente sob a formade linhas contínuas ou intermitentes.Elas são causadas por insuficiente limpeza das bordas de um determinado passe e são aprisionadas pelo passe seguinte.• Falta de Penetração e Fusão.Consideramos falta de penetração, como sendo a falta de material depositado na raiz da solda, devido ao fato do material não terchegado até a raiz. No caso de não haver passe de raiz (selagem) a falta de penetração pode ficar aparente. A aparência radiográficaem ambos os casos é uma linha escura, intermitente ou contínua, no centro do cordão. Radiografia de solda contendo falta de fusão , inclusões em linha• Trincas.As trincas são descontinuidades produzidas por rupturas no metal como resultado de tensões produzidas no mesmo durante asoldagem, sendo mais visível na radiografia, quando o feixe de radiação incide sobre a peça numa direção sensivelmente paralela aoplano que contém a trinca.A trinca produz uma imagem radiográfica na forma de uma linha escura com direção irregular. A largura desta linha dependerá dalargura da trinca. Se a direção do plano que contém a trinca coincide com feixe de radiação, sua imagem será bem escura. De outraforma, ela perderá densidade, podendo até não aparecer. Devido ao fato das trincas serem o mais grave defeito de uma solda, devemoster uma atenção especial para a sua detecção. A imagem das trincas, epsecialmente em filmes de granulação grossa pode não ser muitoclara. No caso de dúvidas por parte do inspetor, seria aconselhável uma mudança na direção do feixe de radiação e a utilização de
  29. 29. R.Andreucci Controle da Qualidade II Ed. Jul./2008 28filmes de granulação fina. Pode ocorrer, também, o fato das trincas não serem detectadas, principalmente quando radiografamos peçasde grande espessura. Imagem de radiográfica contendo trinca e poro (ver circulo)Critérios de Aceitação para Ensaio Radiográfico para Juntas SoldadasO critério de aceitação a seguir foi extraído do Código ASME Sec.VIII Div.1 , sendo o mesmo aplicável a juntas soldadas de topo ,dividido em dois grupos: Soldas projetadas para ensaio radiográfico total (parágrafo UW-51) e soldas projetadas para ensaioradiográfico “Spot” ( parágrafo UW-52) .As juntas soldadas de topo , de um vaso de pressão projetadas conforme o Código ASME , com eficiência 1 , devem ser radiografadastotalmente , mas sómente aquelas principais , classificadas como categoria A e B , como por exemplo as soldas longitudinais do cascoe conexões e circulares do casco e emendas de fundos. Assim sendo, soldas circulares de conexões menores que 10” de diâmetro ,soldas entre conexões e casco , não estão sujeitas ao ensaio radiográfico (ver UW-11 do referido Código). Categoria das Juntas Soldadas ( ASME. Sec.VIII Div.1 UW-33) C B A A A A D B A A B A A A B C D B A CAs juntas soldadas de topo , de um vaso , projetadas conforme o Código ASME com eficiência 0,85 , devem ser radiografadasconforme os critérios do ensaio “Spot”. Neste caso , o ensaio deve ser aplicado para cada soldador ou conjunto de soldadores queparticiparam da soldagem do casco ou fundos do vaso. A extensão mínima destas soldas deve ser de 152 mm , na prática utiliza-semetade do comprimento do filme padrão ( 8.1/2” ) que excede 152 mm. Portanto, antes de ser aplicado o ensaio “Spot” deve serverificado no vaso os soldadores que participaram das soldagens, para se estabelecer a quantidade de filmes necessários.• Critério de Aceitação para radiografia total (UW-51):As soldas deverão estar livres de:(1) qualquer indicação caracterizada como trinca , zona de fusão ou penetração incompleta ;(2) qualquer outra indicação alongada na radiografia que tenha um comprimento maior que: (a) ¼ pol. (6,0 mm) para t até ¾ pol. ; (b) 1/3.t para t de ¾ pol. (19 mm) até 2.1/4 pol. (57 mm) (c) ¾ pol. (19 mm) para t acima de 2./14 pol. (57 mm)
  30. 30. R.Andreucci Controle da Qualidade II Ed. Jul./2008 29 onde t é a espessura da solda excluindo qualquer refôrço permitido. Para juntas de topo que tenham diferentes espessuras de soldas , t é a mais fina das dessas espessuras.(3) qualquer grupo de indicações alinhadas que tenham um comprimento agregado maior que t num comprimento de 12 .t exceto , quando a distância entre duas imperfeições sucessivas exceder a 6.L onde L é o comprimento da mais longa imperfeição no grupo.(4) indicações arredondadas em excesso ao especificado no padrão de aceitação do ASME Sec.VIII Div.1 Ap.4 , que reproduzimos alguns exemplos como segue:• Critério de Aceitação para radiografia “Spot”(UW-52):As soldas deverão estar livres de:(1) qualquer indicação caracterizada como trinca , zona de fusão ou penetração incompleta ;(2) qualquer outra indicação alongada na radiografia que tenha um comprimento maior que: 2/3. t onde t é a espessura da solda excluindo qualquer refôrço permitido. Para juntas de topo que tenham diferentes espessuras de soldas , t é a mais fina das dessas espessuras. Qualquer grupo de indicações alinhadas que tenham um comprimento agregado maior que t num comprimento de 16.t exceto , quando a distância entre duas imperfeições sucessivas exceder a 3.L onde L é o comprimento da mais longa imperfeição no grupo (ver quadro abaixo). 6.t cordão de solda C L1 L2 L3 Ln C < 3 x o comprimento da maior indicação do grupo l1 + l2 + l3 + .... + li < t ( espessura do metal base) O máximo comprimento de uma indicação aceitável deve ser de ¾ pol. (19 mm). Qualquer indicação menores que ¼ pol. (6 mm) deve ser aceitável para qualquer espessura da chapa.(3) Indicações arredondadas não é fator para aceitabilidade de soldas.(4) Caso a radiografia "spot" não apresentar os requisitos mínimos de qualidade requerida, dois "spots" adicionais devem ser radiograficamente examinados no mesmo incremento de solda , localizado fora do local do "spot" original. Se os dois "spots"adicionais examinados mostrarem que a solda está de acordo com os requisitos mínimos de qualidade, então toda a solda representada pelos três "spots" deve ser aceitável, após a remoção dos defeitos mostrados no primeiro "spot" e reensaio da mesma conforme este anexo. Se pelo menos um dos dois "spots"adicionais mostrarem que a solda não apresenta os requisitos mínimos de qualidade, o comprimento inteiro da solda representada pelas radiografias , deverá ser rejeitada. A solda rejeitada , deve ser removida e a junta resoldada, ou como opção, poderá ser 100% radiografada, e reparada onde necessário. Novo ensaio deverá ser efetuado , conforme as regras acima descritas.
  31. 31. R.Andreucci Controle da Qualidade II Ed. Jul./2008 30• Padrão de aceitação Conforme ASME Sec. IX QW-191.2O exame radiográfico, referente aos testes do desempenho de soldadores e operadores, deve ser julgado inaceitável quando asradiografias exibirem qualquer imperfeição que exceda os limites especificados abaixo:(1) Indicações do tipo linear;Qualquer tipo de trinca, ou zona de fusão incompleta, ou falta de penetração;(2) Qualquer inclusão de escória alongada, que tenha um comprimento maior que: • 3 mm para espessuras t até 10 mm, inclusive; • 1/3 de t, para t acima de 10 mm e até 55 mm, inclusive; • 20 mm para t acima de 55 mm. Onde: t é a espessura da solda excluindo qualquer reforço(3) Qualquer grupo de inclusões de escórias que estejam em alinhamento e que tenha um comprimento acumulado maior do que tnuma extensão igual a 12 t, exceto nos casos em que a distância entre imperfeições sucessivas seja maior do que 6L, onde L é ocomprimento da imperfeição mais alongada verificada no agrupamento.(4) Indicações de formato arredondado:Indicações arredondadas em excesso do especificado pelo padrão de aceitação de porosidade descritas como segue:A dimensão máxima permissível para as imperfeições de formato arredondado é 20% de t ou 3 mm, a que for menor.Para as soldas de materiais com espessuras menores do que 3 mm, a quantidade máxima aceitável de imperfeições de formatoarredondado não deve ser superior a 12 em um comprimento de solda de 150 mm. Para comprimentos de solda inferiores a 150 mm,deve ser permitida uma quantidade de imperfeições proporcionalmente menor.As imperfeições de formato arredondado menores do que 0,8 mm não devem ser consideradas no julgamento das radiografias, quandoda aprovação dos corpos de prova de soldadores e operadores nessas faixas de espessuras de materiais.Exercícios para Estudo :1) O Ensaio Radiográfico foi desenvolvido para: a) detectar descontinuidades superficiais. b) inspecionar peças com grandes espessuras. c) detectar defeitos em soldas d) detectar descontinuidades internas em geral.2) Quanto às propriedades das radiações gama podemos afirmar que: a) possuem grande poder de penetração nos materiais leves. b) são geradas no núcleo do átomo. c) podem enegrecer chapas fotográficas. d) todas as alternativas acima são corretas.3) Quanto ao poder de penetração das radiações, qual é a mais penetrante? a) os raios X possuem maior poder de penetração que os raios gama b) os raios X gama possuem maior poder de penetração que os raios X. c) a luz ultra-violeta tem mais poder de penetração que os raios X d) N.D.A4) Quanto ao tamanho padronizado , dos filmes radiográficos industriais temos: a) 14" x 17" e 3.1/2" x 8.1/2". b) 3.1/2" x 17" e 4.1/2" x 17" c) 4.1/2" x 8.1/2" d) 2 cm x 45 cm.
  32. 32. R.Andreucci Controle da Qualidade II Ed. Jul./2008 315) Uma vantagem dos irradiadores gama em relação aos aparelhos de Raios-X é: a) Os irradiadores gama são mais leves e portáteis que os aparelhos de Raios-X. b) Os irradiadores gama produzem filmes com maior qualidade que os de Raios-X. c) Os irradiadores gama são mais seguros que os de Raios-X. d) Os irradiadores gama permitem executar filmes pela técnica panorâmica.6) No Código ASME Sec.VIII div.1,"Full radiography", isto significa que: a) todas as soldas do vaso de pressão deve ser radiografadas. b) as radiografias do vaso devem abranger todos os soldadores que trabalharam no vaso de pressão,numa extensão no mínimo de 150 mm. c) o vaso deve ser 100% radiografado. d) sómente as soldas de topo ,principais do vaso devem ser examinadas7) No Código ASME Sec.VIII div.1 , quando é especificado "Spot radiography" , isto significa que: a) todas as soldas do vaso de pressão deve ser radiografada. b) as radiografias do vaso devem abranger todos os soldadores que trabalharam no vaso de pressão,numa extensão no mínimo de 150 mm. c) o vaso deve ser 100% radiografado. d) somente as conexões devem ser radiografadas.8) Se uma junta soldada foi projetada conforme o Código ASME Sec.VIII Div.1 , com eficiência de solda igual a 1 , então quanto à extensão do ensaio radiográfico temos que: a) a junta deverá ser radiografada parcialmente , 10% b) a junta deverá ser radiografada conforme os critérios de UW-52 c) a junta deverá ser radiografada conforme os critérios de UW-51 d) a junta não necessitará de ser radiografada9) Ao se analisar um radiografia, qual o fator referente à qualidade que deverá ser verificado ? a) existência de manchas de manuseio do filme. b) se a imagem do furo ou fio essencial do IQI,é visível. c) se a densidade óptica está dentro da faixa permitida. d) todas as alternativas acima são corretas.10) Descreva em poucas linhas o que entendeu sobre o mecanismo de formação da imagem radiográfica...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................11) A sobreposição dos filmes radiográficos na inspeção de uma junta soldada , tem a finalidade de: a) assegurar a detecção de falta de fusão. b) assegurar a projeção da imagem dos marcadores de posição. c) assegurar o alinhamento fonte-filme. d) assegurar a total cobertura do volume de solda a inspecionar.
  33. 33. R.Andreucci Controle da Qualidade II Ed. Jul./2008 3212) Se um vaso de pressão com 3000 mm de diâmetro tem sua solda circular totalmente radiografada ,com sobreposição entre filmes de 20 mm ,então o número de filmes necessários para este serviço, será: a) 50 filmes , usando a técnica panoramica b) 25 filmes , usando a técnica PD-VD c) 10 filmes , usando a técnica panorâmica d) 25 filmes , usando a técnica panorâmica13) A técnica radiográfica que atravessa duas paredes do tubo,porém projeta somente uma espessura da solda ,no filme denomina-se: a) PD-VD b) PS-VD c) VD-VS d) PD-VS14) A imagem radiográfica de uma solda ,com espessura de 1/2" apresentou uma indicação de falta de fusão com comprimento de apenas 1,5 mm. De acordo com o Código ASME Sec.VIII div.1 , esta descontinuidade : a) aprovada ,pois é não relevante. b) reprovada. c) aprovada, se estiver de forma isolada. d) aprovada , se um ensaio complementar comprovar seu comprimento.15) O desenho abaixo representa a imagem de uma solda no filme radiográfico , com espessura de 25 mm ,excluindo o reforço de 6 mm. Observe a descontinuidade número 3. Na sua opinião,trata-se de a) Falta de fusão b) Falta de Penetração c) Escória d) Porosidade16) Na figura da questão 15, a descontinuidade de número 2 ,trata-se de: a) Falta de fusão b) Falta de Penetração c) Escória d) Porosidade17) Na figura da questão 15 ,a descontinuidade número 1 , deve ser tratada ,segundo o critério de aceitação ASME-Sec.VIII div.1,UW- 51, como: a) indicação alongada maior que 6,0 mm , reprovada. b) falta de penetração, reprovada c) indicação alongada , que excede 1/3.t , reprovada. d) indicação alongada , que não excede 1/3.t , aprovada18) Na figura de questão 15 , o IQI escolhido foi o correto ? a) Sim b) Não

×