Reinstein visumax

2,188 views
1,974 views

Published on

Published in: Business, Technology
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
2,188
On SlideShare
0
From Embeds
0
Number of Embeds
19
Actions
Shares
0
Downloads
0
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide
  • I acknowledge a financial interest in the Artemis technology and am a consultant for Carl Zeiss Meditec
  • In order for the reproducibility results to be valid, the precision of the measuring instrument needs to be smaller than the reproducibility of the data set being measured.
  • For example, considering that 95% of measurements will be contained within a range of two standard deviations from the mean,
  • if an instrument with a precision of 1 µm were to be used to repeatedly measure the same flap, known to be exactly 110 µm in thickness, 95% of the measurements would fall between 108-112 µm (2 standard deviations from the mean).
  • On the other hand, if an instrument with a precision of 10 µm were to be used to repeatedly measure the same 110 micron flap, 95% of the measurements would fall between 90 and 130 µm.  
  • Therefore, the validity of a flap thickness study is compromised if the precision of the measuring instrument is too large to be able to distinguish between two data points. And really, it’s the rule of 3 times – as 99.5% of data points are to be found within 3 standard deviations of the mean
  • For a claim of let’s say, a flap thickness reproducibility of 5 microns, the precision of the measuring tool needs to be at least half, …
  • preferably a third of 5 microns, or 1.66 microns.
  • So for example, the Artemis, with a 1.14 micron precision is perfectly capable of proving a flap thickness reproducibility of 7.89 microns
  • In fact, the Artemis, with a 1.14 micron precision, can be expected to distinguish flaps that are at least 3.42 microns different in thickness and therefore can legitimately be used to study the flap reproducibility of a system as long as the flap reproducibility is not better than 3.42 microns.
  • All experiments were performed in New zealand white rabbits of both sexes, anesthetized with PENTOPARBITAL. Since the laser doppler system is a sensitive motion detector the animals were paralysed with FLEXADIL to avoid measurement artefacts by movement. The rabbits were artificially respired. exspired CO2 levels were kept around 42 milimeters of mercury. body temperature was maintained by a heating pad. H ydrolic occluders were placed around the abdominal aorta and the inferior caval vein to manipulate mean arterial pressure and thereby change the perfusion pressure of the target tissue over a wide range. During the occlussion of the abdominal aorta blood flow to the lower half of the body is redirected to the upper half which increases blood pressure at the level of the ciliary body. During a caval occlusion venous return is decreased which in turn decreases blood pressure in the whole animal.
  • All experiments were performed in New zealand white rabbits of both sexes, anesthetized with PENTOPARBITAL. Since the laser doppler system is a sensitive motion detector the animals were paralysed with FLEXADIL to avoid measurement artefacts by movement. The rabbits were artificially respired. exspired CO2 levels were kept around 42 milimeters of mercury. body temperature was maintained by a heating pad. H ydrolic occluders were placed around the abdominal aorta and the inferior caval vein to manipulate mean arterial pressure and thereby change the perfusion pressure of the target tissue over a wide range. During the occlussion of the abdominal aorta blood flow to the lower half of the body is redirected to the upper half which increases blood pressure at the level of the ciliary body. During a caval occlusion venous return is decreased which in turn decreases blood pressure in the whole animal.
  • Reinstein visumax

    1. 1. The Great Femtosecond Face-off: Carl Zeiss Meditec VisuMax Dan Z Reinstein MD MA(Cantab) FRCSC FRCOphth 1,2,3,4 1. London Vision Clinic, London, UK 2. St. Thomas’ Hospital - Kings College, London, UK 3. Weill Medical College of Cornell University, New York, 4. Centre Hospitalier National d’Ophtalmologie, (Pr. Laroche) , Paris, France
    2. 2. Financial Disclosure The author (DZ Reinstein) acknowledges a financial interest in Artemis™ VHF digital ultrasound ( ArcScan Inc , Morrison, CO) The author (DZ Reinstein) is a consultant for Carl Zeiss Meditec AG (Jena, Germany)
    3. 3. <ul><li>The Bermuda triangle of treatment parameters </li></ul><ul><ul><li>Short procedure time </li></ul></ul><ul><ul><li>Easy flap lift / tissue separation </li></ul></ul><ul><ul><li>Excellent cut quality </li></ul></ul><ul><ul><li>No adverse effects (DLK, TLS) </li></ul></ul><ul><ul><li>Accurate focusing </li></ul></ul><ul><ul><ul><li>Flaps </li></ul></ul></ul><ul><ul><ul><li>FLEX </li></ul></ul></ul>VisuMax Femtosecond System 0.1 µJ 500 kHz ~1 µm Pulse Rate Precise Focusing Spot Energy
    4. 4. <ul><li>Zeiss high performance optics key for optimum cut </li></ul>VisuMax Femtosecond System ▼ low Numerical aperture high ▲ ▼ large Spot diameter small ▲ ▼ low Depth accuracy high ▲ ▼ high Single pulse energy small ▲
    5. 5. The Great Femtosecond Face-off: Carl Zeiss Meditec VisuMax <ul><li>High Flap Thickness Reproducibility </li></ul><ul><li>Low Corneal Suction </li></ul><ul><li>Centration on the Corneal Vertex </li></ul><ul><li>Ultra Thin Flap </li></ul><ul><li>Flaps &quot;Made to Measure&quot; </li></ul><ul><li>Flaps in “Difficult” Eyes </li></ul><ul><li>Visual Outcomes </li></ul><ul><li>Future Potential: All-in-One </li></ul>
    6. 6. The Great Femtosecond Face-off: Carl Zeiss Meditec VisuMax <ul><li>High Flap Thickness Reproducibility </li></ul><ul><li>Low Corneal Suction </li></ul><ul><li>Centration on the Corneal Vertex </li></ul><ul><li>Ultra Thin Flap </li></ul><ul><li>Flaps &quot;Made to Measure&quot; </li></ul><ul><li>Flaps in “Difficult” Eyes </li></ul><ul><li>Visual Outcomes </li></ul><ul><li>Future Potential: All-in-One </li></ul>
    7. 7. Assessment of VisuMax Flap Thickness <ul><li>24 eyes treated with intended flap thickness of 110 µm </li></ul><ul><li>Central flap thickness measured by Artemis </li></ul>J Refract Surg. Online Pre Release.
    8. 8. Artemis very high-frequency digital ultrasound arc-scanner <ul><li>Digital signal processing significantly reduces noise and enhances signal-to-noise ratio compared to analog signal processing </li></ul><ul><ul><li>doubles resolution </li></ul></ul><ul><ul><li>increase measurement precision by a factor of 3 </li></ul></ul><ul><li>Thickness measurements made by computer-analysis of peaks on the I-scan trace – each peak provides a surface localization of 0.87 µm </li></ul><ul><li>3D layered pachymetry precision </li></ul><ul><ul><li>Epithelium – 0.61 µm </li></ul></ul><ul><ul><li>Cornea – 0.74 µm </li></ul></ul><ul><ul><li>Flap – 1.14 µm </li></ul></ul>Surface localization: 0.87 µm ArcScan Inc Evergreen, Colorado
    9. 9. Flap Thickness Measurement <ul><li>3D VHF digital ultrasound flap thickness measurement before and 3 months after treatment with Artemis I </li></ul>+ Pre-op Post-op 3 months Epithelial thickness Stromal Flap thickness <ul><li>Central flap thickness = </li></ul>Thickness of the stromal component of the flap measured 3 months after surgery + Preoperative epithelial thickness
    10. 10. Artemis B-Scan: 6 Months Post LASIK Artemis B-Scan (above) of VisuMax Flap 6 months post LASIK. Edge detection by I-scan digital signal processing (red outline, below) based on raw scan data
    11. 11. RESULTS: Central Flap Thickness <ul><li>Intended flap thickness = 110.00 µm </li></ul><ul><li>Average flap thickness = 112.31 µm </li></ul><ul><li>Accuracy = +2.31 µm </li></ul><ul><li>Precision (SD) = 7.89 µm </li></ul><ul><li>Minimum flap thickness = 102.61 µm </li></ul><ul><li>Maximum flap thickness = 132.94 µm </li></ul><ul><li>Range = 30.34 µm </li></ul>
    12. 12. RESULTS: Central Flap Thickness <ul><ul><li>25% of eyes within 2 µm of the intended flap thickness </li></ul></ul><ul><ul><li>54.2% of eyes within 5 µm of the intended flap thickness </li></ul></ul><ul><ul><li>87.5% of eyes within 10 µm of the intended flap thickness </li></ul></ul>
    13. 13. Flap Thickness Reproducibility: Published <ul><ul><li>Two studies done with Artemis </li></ul></ul>Author Microkeratome Accuracy (µm) SD (µm) Pachymetry Method Pachymetry Instrument Stahl 2007 IntraLase FS60 +12.0 5.0 1 Mo Post-op OCT Visante Pietila 2009 Femto LDV -20.0 5.0 Intra-op US SP-3000 Alio 2008 IntraLase FS30 +6.0 6.2 1 Mo Post-op VHFU Artemis-2 Hu 2007 IntraLase FS30 +13.9 7.1 3 Mo Post-op CMTF NR Reinstein 2009 VisuMax +2.3 7.9 Pre and 3 Mo Post-op VHFU Artemis-1 Li 2007 IntraLase (Pulsion) +35.0 9.0 1 Wk Post-op OCT CAS-OCT Holzer 2006 Femtec -0.4 9.1 Micrometer Digimatic Sutton 2008 IntraLase FS30 -1.0 9.8 Intra-op US Corneo-Gage Plus Binder 2006 IntraLase FS10 +35.8 10.1 Intra-op US Cornea Scan II 50 MHz Binder 2006 IntraLase FS15 +21.1 10.2 Intra-op US Cornea Scan II 50 MHz Holzer 2006 Femtec +3.7 10.7 Micrometer Digimatic Binder 2006 IntraLase FS15 +25.8 10.8 Intra-op US Cornea Scan II 50 MHz Sutton 2008 IntraLase FS15 +11.8 10.8 Intra-op US Corneo-Gage Plus Li 2007 IntraLase (Pulsion) +30.0 11.0 Intra-op US Corneo-Gage 2 50 MHz Li 2007 IntraLase (Pulsion) +36.0 11.0 1 Wk Post-op OCT CAS-OCT (Visante prototype) Holzer 2006 Femtec -7.9 11.1 Micrometer Digimatic Hu 2007 IntraLase FS15 +16.8 11.1 3 Mo Post-op CMTF NR Binder 2006 IntraLase FS15 +20.1 11.8 Intra-op US Cornea Scan II 50 MHz Binder 2004 IntraLase FS +2.4 11.9 Intra-op US NR Binder 2004 IntraLase FS +15.0 12.0 Intra-op US NR Talamo 2006 IntraLase FS +9.0 12.0 Intra-op US Pachette II Binder 2006 IntraLase FS10 +29.2 12.4 Intra-op US Cornea Scan II 50 MHz Kim 2008 IntraLase FS60 +8.9 13.6 3 Mo Post-op OCT Visante Pfaeffl 2008 IntraLase FS30 +0.4 13.6 Intra-op OCP Online OCP Kezirian 2004 IntraLase FS -16.0 14.0 Intra-op US Pachette 50/60 KHz pachymeter Binder 2006 IntraLase FS10 +29.7 14.3 Intra-op US Cornea Scan II 50 MHz Neuhann 2008 IntraLase FS30 +11.7 14.7 Intra-op OCP Online OCP Binder 2006 IntraLase FS10 +17.4 15.2 Intra-op US Cornea Scan II 50 MHz Binder 2004 IntraLase FS -1.3 16.6 Intra-op US NR Binder 2006 IntraLase FS10 -0.4 17.1 Intra-op US Cornea Scan II 50 MHz Kim 2008 IntraLase FS60 +4.8 17.6 3 Mo Post-op OCT Visante Binder 2004 IntraLase FS -7.5 18.5 Intra-op US NR Binder 2006 IntraLase FS10 -9.4 19.0 Intra-op US Cornea Scan II 50 MHz Li 2007 IntraLase (Pulsion) +40.0 19.0 Intra-op US Corneo-Gage 2 50 MHz Binder 2006 IntraLase FS10 +13.4 22.1 Intra-op US Cornea Scan II 50 MHz
    14. 14. Validity of Measurement Instrument
    15. 15. Validity of Measurement Instrument 95% values within 2 standard deviations
    16. 16. Validity of Measurement Instrument 95% values within 2 standard deviations Precision: 1 µm 95% within: 108-112 µm
    17. 17. Validity of Measurement Instrument 95% values within 2 standard deviations Precision: 10 µm 95% within: 90-130 µm
    18. 18. Validity of Measurement Instrument 95 104 105 106 114 115 116 125 Value 1 Value 2 Valid Invalid Instrument 1 Instrument 2
    19. 19. Validity of Measurement Instrument Required Precision: 2.5 µm Reproducibility: 5 µm
    20. 20. Validity of Measurement Instrument Ideal Precision: 1.66 µm Reproducibility: 5 µm
    21. 21. Validity of Measurement Instrument Artemis Flap Thickness Repeatability: 1.14 µm Therefore, the Artemis is capable of measuring a flap thickness reproducibility of 7.89 µm as found in this study
    22. 22. Validity of Measurement Instrument Artemis Flap Thickness Repeatability: 1.14 µm The Artemis is capable of measuring a flap thickness reproducibility as small as 3.42 µm
    23. 23. The Great Femtosecond Face-off: Carl Zeiss Meditec VisuMax <ul><li>High Flap Thickness Reproducibility </li></ul><ul><li>Low Corneal Suction </li></ul><ul><li>Centration on the Corneal Vertex </li></ul><ul><li>Ultra Thin Flap </li></ul><ul><li>Flaps &quot;Made to Measure&quot; </li></ul><ul><li>Flaps in “Difficult” Eyes </li></ul><ul><li>Visual Outcomes </li></ul><ul><li>Future Potential: All-in-One </li></ul>
    24. 24. VisuMax Femtosecond System : Patient Comfort <ul><li>Spherical contact interface to cornea </li></ul><ul><li>Low corneal suction </li></ul><ul><ul><li>Minimal applanation </li></ul></ul><ul><ul><li>Minimal IOP increase </li></ul></ul><ul><ul><li>No vision loss during suction (data on file) </li></ul></ul><ul><li>“ Out-to-in” femtosecond ablation </li></ul><ul><ul><li>Fixation throughout flap creation </li></ul></ul>Cross section of the contact glass
    25. 25. IOP Comparison: VisuMax vs IntraLase Comparison of typical curves plotted on the same scale Ref: Grabner G. Femtosecond to fully replace microkeratome. Ophthalmology Times, 2008 0 50 100 150 200 250 300 350 0 20 40 60 80 100 time (sec) IOP (mmHg) IntraLase VisuMax
    26. 26. IOP Comparison: VisuMax vs IntraLase VisuMax flap creation time reduced to ~20 seconds with software v 2.4.0 Comparison of typical curves plotted on the same scale Ref: Grabner G. Femtosecond to fully replace microkeratome. Ophthalmology Times, 2008
    27. 27. Questionnaire: Patient Experience VisuMax vs Hansatome
    28. 28. Questionnaire : Claustrophobia
    29. 29. Questionnaire : Discomfort from Pressure
    30. 30. Questionnaire : Length of Time With Pressure
    31. 31. The Great Femtosecond Face-off: Carl Zeiss Meditec VisuMax <ul><li>High Flap Thickness Reproducibility </li></ul><ul><li>Low Corneal Suction </li></ul><ul><li>Centration on the Corneal Vertex </li></ul><ul><li>Ultra Thin Flap </li></ul><ul><li>Flaps &quot;Made to Measure&quot; </li></ul><ul><li>Flaps in “Difficult” Eyes </li></ul><ul><li>Visual Outcomes </li></ul><ul><li>Future Potential: All-in-One </li></ul>
    32. 32. <ul><li>Internal fixation target for patient – refraction corrected </li></ul><ul><li>Patient compliance </li></ul><ul><li>Auto centration on docking to contact glass – corneal vertex </li></ul><ul><li>Patient visualisation of the target throughout the procedure </li></ul>VisuMax Femtosecond System : Centration
    33. 33. Flap Centration on Corneal Vertex
    34. 34. Flap Centration on Corneal Vertex Corneal vertex Flap edge Dye pooling in ablation zone
    35. 35. The Great Femtosecond Face-off: Carl Zeiss Meditec VisuMax <ul><li>High Flap Thickness Reproducibility </li></ul><ul><li>Low Corneal Suction </li></ul><ul><li>Centration on the Corneal Vertex </li></ul><ul><li>Ultra Thin Flap </li></ul><ul><li>Flaps &quot;Made to Measure&quot; </li></ul><ul><li>Flaps in “Difficult” Eyes </li></ul><ul><li>Visual Outcomes </li></ul><ul><li>Future Potential: All-in-One </li></ul>
    36. 36. Ultra Thin Flap LASIK: No Need For PRK <ul><li>PRK Corneal Thickness Limit: 350 µm </li></ul><ul><li>Alternative: Ultra Thin Flap LASIK </li></ul><ul><ul><li>VisuMax Flap Thickness: 80 µm </li></ul></ul><ul><ul><li>Corneal Thickness: 350 µm </li></ul></ul><ul><ul><li>LASIK RST = 350 – 80 = 270 µm (>250 µm) </li></ul></ul>Flap thickness: 84 µm
    37. 37. The Great Femtosecond Face-off: Carl Zeiss Meditec VisuMax <ul><li>High Flap Thickness Reproducibility </li></ul><ul><li>Low Corneal Suction </li></ul><ul><li>Centration on the Corneal Vertex </li></ul><ul><li>Ultra Thin Flap </li></ul><ul><li>Flaps &quot;Made to Measure&quot; </li></ul><ul><li>Flaps in “Difficult” Eyes </li></ul><ul><li>Visual Outcomes </li></ul><ul><li>Future Potential: All-in-One </li></ul>
    38. 38. Flap Creation with Previous PRK Thick epithelium after hyperopic PRK Flap underneath epithelium Epithelium Post PRK for +3.00 D
    39. 39. Recutting Flaps: Measure Twice, Cut Once! Incomplete Flap: Hansatome zero compression microkeratome
    40. 40. Recutting Flaps: Measure Twice, Cut Once! Second flap created under the half flap using the VisuMax femtosecond laser
    41. 41. Recutting Flaps: Measure Twice, Cut Once! <ul><li>Original flap created in 1999 </li></ul><ul><li>Measure Once: Artemis scan to measure flap thickness </li></ul>Flap Thickness Profile
    42. 42. Recutting Flaps: Measure Twice, Cut Once! <ul><li>Micro-bubble layer created with the VisuMax </li></ul><ul><li>Measure Twice: Artemis scan repeated before lifting the flap </li></ul><ul><li>Confirmed that the VisuMax flap was below original flap </li></ul>VisuMax Micro-Bubble Layer Creation
    43. 43. Recutting Flaps: Measure Twice, Cut Once! <ul><li>Flap lifted and ablation performed </li></ul><ul><li>Artemis scan 1 month post-op confirmed VisuMax flap below original flap </li></ul>
    44. 44. The Great Femtosecond Face-off: Carl Zeiss Meditec VisuMax <ul><li>High Flap Thickness Reproducibility </li></ul><ul><li>Low Corneal Suction </li></ul><ul><li>Centration on the Corneal Vertex </li></ul><ul><li>Ultra Thin Flap </li></ul><ul><li>Flaps &quot;Made to Measure&quot; </li></ul><ul><li>Flaps in “Difficult” Eyes </li></ul><ul><li>Visual Outcomes </li></ul><ul><li>Future Potential: All-in-One </li></ul>
    45. 45. VisuMax when Hansatome not Possible Hansatome VisuMax Forced to switch to PRK Retreatment as VisuMax
    46. 46. VisuMax Flap in RK Patient
    47. 47. VisuMax Flap in Deep Lamellar Keratoplasty
    48. 48. The Great Femtosecond Face-off: Carl Zeiss Meditec VisuMax <ul><li>High Flap Thickness Reproducibility </li></ul><ul><li>Low Corneal Suction </li></ul><ul><li>Centration on the Corneal Vertex </li></ul><ul><li>Ultra Thin Flap </li></ul><ul><li>Flaps &quot;Made to Measure&quot; </li></ul><ul><li>Flaps in “Difficult” Eyes </li></ul><ul><li>Visual Outcomes </li></ul><ul><li>Future Potential: All-in-One </li></ul>
    49. 49. VisuMax Population <ul><li>232 eyes of 131 patients </li></ul><ul><li>Age </li></ul><ul><ul><li>median 38 years </li></ul></ul><ul><ul><li>range 21 to 68 years </li></ul></ul><ul><li>Spherical equivalent </li></ul><ul><ul><li>mean -4.00 ± 1.86 D </li></ul></ul><ul><ul><li>range -0.13 to -8.63 D </li></ul></ul><ul><li>Cylinder </li></ul><ul><ul><li>mean -0.72 ± 0.54 D </li></ul></ul><ul><ul><li>range 0.00 to -2.50 D </li></ul></ul><ul><li>BSCVA </li></ul><ul><ul><li>100% 20/20 </li></ul></ul><ul><ul><li>59% 20/16 </li></ul></ul>
    50. 50. Attempted vs Achieved: 6 Months
    51. 51. Accuracy 6 Months: Within Range of Intended
    52. 52. Efficacy 6 Months: Binocular Vision
    53. 53. Efficacy 6 Months: Monocular Vision
    54. 54. Safety 6 Months: Lines Change BSCVA
    55. 55. Stability: Change in Spherical Equivalent Pre Op 1 Day 1 Month 3 Months 6 Months Avg SEQ -4.06 +0.37 -0.08 -0.15 -0.17 SD SEQ 1.85 0.36 0.43 0.42 0.41 # eyes 232 228 223 203 222
    56. 56. The Great Femtosecond Face-off: Carl Zeiss Meditec VisuMax <ul><li>High Flap Thickness Reproducibility </li></ul><ul><li>Low Corneal Suction </li></ul><ul><li>Centration on the Corneal Vertex </li></ul><ul><li>Ultra Thin Flap </li></ul><ul><li>Flaps &quot;Made to Measure&quot; </li></ul><ul><li>Flaps in “Difficult” Eyes </li></ul><ul><li>Visual Outcomes </li></ul><ul><li>Future Potential: All-in-One </li></ul>
    57. 57. VisuMax Unsurpassed Future Potential <ul><li>The new horizon of femtosecond technology in ophthalmology </li></ul><ul><li>VisuMax is designed to become the corneal surgery workstation for a large spectrum of procedure options </li></ul><ul><li>Unprecedented accuracy in corneal incisions </li></ul><ul><ul><li>eg Femtosecond lenticule extraction (FLEx) </li></ul></ul>
    58. 58. The Great Femtosecond Face-off: Carl Zeiss Meditec VisuMax Dan Z Reinstein MD MA(Cantab) FRCSC FRCOphth 1,2,3,4 1. London Vision Clinic, London, UK 2. St. Thomas’ Hospital - Kings College, London, UK 3. Weill Medical College of Cornell University, New York, 4. Centre Hospitalier National d’Ophtalmologie, (Pr. Laroche) , Paris, France Thank You
    59. 59. Comparison with IntraLase
    60. 60. IntraLase Claims vs VisuMax <ul><li>Lack of clinical data </li></ul><ul><li>Few “champion” users </li></ul><ul><li>Instability </li></ul><ul><li>Curved glass can't work properly </li></ul><ul><li>IOP </li></ul><ul><li>Flap diameter </li></ul><ul><li>No recentration software </li></ul><ul><li>Can't do oval flap </li></ul><ul><li>Can't do ICRS </li></ul><ul><li>Faster? </li></ul>
    61. 61. IntraLase Claims vs VisuMax <ul><li>Lack of clinical data </li></ul><ul><li>Few “champion” users </li></ul><ul><li>Instability </li></ul><ul><li>Curved glass can't work properly </li></ul><ul><li>IOP </li></ul><ul><li>Flap diameter </li></ul><ul><li>No recentration software </li></ul><ul><li>Can't do oval flap </li></ul><ul><li>Can't do ICRS </li></ul><ul><li>Faster? </li></ul><ul><li>Reinstein et al </li></ul><ul><ul><li>Accuracy and Reproducibility of Central Flap Thickness and Visual Outcomes of LASIK with the VisuMax Femtosecond Laser System and the MEL80 Excimer Laser </li></ul></ul><ul><ul><li>JRS [Online] </li></ul></ul><ul><li>Blum et al </li></ul><ul><ul><li>LASIK for Myopia Using the Zeiss VisuMax Femtosecond Laser and MEL 80 Excimer Laser </li></ul></ul><ul><ul><li>JRS [Online] </li></ul></ul><ul><li>Sekundo et al </li></ul><ul><ul><li>First efficacy and safety study of femtosecond lenticule extraction for the correction of myopia Six-month results </li></ul></ul><ul><ul><li>JRS Sept 2008 </li></ul></ul>
    62. 62. IntraLase Claims vs VisuMax <ul><li>Lack of clinical data </li></ul><ul><li>Few “champion” users </li></ul><ul><li>Instability </li></ul><ul><li>Curved glass can't work properly </li></ul><ul><li>IOP </li></ul><ul><li>Flap diameter </li></ul><ul><li>No recentration software </li></ul><ul><li>Can't do oval flap </li></ul><ul><li>Can't do ICRS </li></ul><ul><li>Faster? </li></ul><ul><li>Dan Reinstein </li></ul><ul><li>So what? It’s just newer! </li></ul>
    63. 63. IntraLase Claims vs VisuMax <ul><li>Lack of clinical data </li></ul><ul><li>Few “champion” users </li></ul><ul><li>Instability </li></ul><ul><li>Curved glass can't work properly </li></ul><ul><li>IOP </li></ul><ul><li>Flap diameter </li></ul><ul><li>No recentration software </li></ul><ul><li>Can't do oval flap </li></ul><ul><li>Can't do ICRS </li></ul><ul><li>Faster? </li></ul><ul><li>Instability and crashes have been ironed out since the prototype </li></ul>
    64. 64. IntraLase Claims vs VisuMax <ul><li>Lack of clinical data </li></ul><ul><li>Few “champion” users </li></ul><ul><li>Instability </li></ul><ul><li>Curved glass can't work properly </li></ul><ul><li>IOP </li></ul><ul><li>Flap diameter </li></ul><ul><li>No recentration software </li></ul><ul><li>Can't do oval flap </li></ul><ul><li>Can't do ICRS </li></ul><ul><li>Faster? </li></ul><ul><li>Curved glass is auto-calibrated for each lens </li></ul>
    65. 65. IntraLase Claims vs VisuMax <ul><li>Lack of clinical data </li></ul><ul><li>Few “champion” users </li></ul><ul><li>Instability </li></ul><ul><li>Curved glass can't work properly </li></ul><ul><li>IOP </li></ul><ul><li>Flap diameter </li></ul><ul><li>No recentration software </li></ul><ul><li>Can't do oval flap </li></ul><ul><li>Can't do ICRS </li></ul><ul><li>Faster? </li></ul><ul><li>IOP has been shown to be lower for VisuMax than IntraLase (Grabner) </li></ul><ul><ul><li>VisuMax: 84 mmHg </li></ul></ul><ul><ul><li>IntraLase: 180 mmHg </li></ul></ul><ul><li>IOP raised for shorter duration </li></ul><ul><ul><li>VisuMax: ~30 seconds </li></ul></ul><ul><ul><li>IntraLase: ~80 seconds </li></ul></ul><ul><li>Patient can see during procedure </li></ul>
    66. 66. IntraLase Claims vs VisuMax <ul><li>Lack of clinical data </li></ul><ul><li>Few “champion” users </li></ul><ul><li>Instability </li></ul><ul><li>Curved glass can't work properly </li></ul><ul><li>IOP </li></ul><ul><li>Flap diameter </li></ul><ul><li>No recentration software </li></ul><ul><li>Can't do oval flap </li></ul><ul><li>Can't do ICRS </li></ul><ul><li>Faster? </li></ul><ul><li>Reinstein data showed achieved flap diameter 0.50 mm greater than displayed </li></ul><ul><li>Recentration with IntraLase reduces flap diameter </li></ul>
    67. 67. IntraLase Claims vs VisuMax <ul><li>Lack of clinical data </li></ul><ul><li>Few “champion” users </li></ul><ul><li>Instability </li></ul><ul><li>Curved glass can't work properly </li></ul><ul><li>IOP </li></ul><ul><li>Flap diameter </li></ul><ul><li>No recentration software </li></ul><ul><li>Can't do oval flap </li></ul><ul><li>Can't do ICRS </li></ul><ul><li>Faster? </li></ul><ul><li>Not required as VisuMax auto-centrates on the corneal vertex </li></ul>
    68. 68. IntraLase Claims vs VisuMax <ul><li>Lack of clinical data </li></ul><ul><li>Few “champion” users </li></ul><ul><li>Instability </li></ul><ul><li>Curved glass can't work properly </li></ul><ul><li>IOP </li></ul><ul><li>Flap diameter </li></ul><ul><li>No recentration software </li></ul><ul><li>Can't do oval flap </li></ul><ul><li>Can't do ICRS </li></ul><ul><li>Faster? </li></ul><ul><li>Why do you need an oval flap? </li></ul><ul><li>Induce astigmatism? </li></ul>
    69. 69. IntraLase Claims vs VisuMax <ul><li>Lack of clinical data </li></ul><ul><li>Few “champion” users </li></ul><ul><li>Instability </li></ul><ul><li>Curved glass can't work properly </li></ul><ul><li>IOP </li></ul><ul><li>Flap diameter </li></ul><ul><li>No recentration software </li></ul><ul><li>Can't do oval flap </li></ul><ul><li>Can't do ICRS </li></ul><ul><li>Faster? </li></ul><ul><li>ICRS settings in the pipeline along with graft, AK etc </li></ul>
    70. 70. IntraLase Claims vs VisuMax <ul><li>Lack of clinical data </li></ul><ul><li>Few “champion” users </li></ul><ul><li>Instability </li></ul><ul><li>Curved glass can't work properly </li></ul><ul><li>IOP </li></ul><ul><li>Flap diameter </li></ul><ul><li>No recentration software </li></ul><ul><li>Can't do oval flap </li></ul><ul><li>Can't do ICRS </li></ul><ul><li>Faster? </li></ul><ul><li>Total time for IntraLase is longer </li></ul><ul><ul><li>Ring segment placement </li></ul></ul><ul><ul><li>Docking of lens </li></ul></ul><ul><ul><li>Ablation </li></ul></ul>

    ×