CIRCUITOS DIGITALES II



                      MAPA DE KARNAUGH (MK)

       Es un método gráfico para la simplificación ...
CIRCUITOS DIGITALES II


      En los bordes superiores y laterales, se colocan los valores que pueden
tomar las variables...
CIRCUITOS DIGITALES II




      CD
 AB        00       01       11        10
                                            ...
CIRCUITOS DIGITALES II


             REGLAS DE AGRUPAMIENTO Y SIMPLIFICACION
       Cada grupo de celdas le permitirá a u...
CIRCUITOS DIGITALES II


      Por cada grupo de dos celdas propuesto, se reduce en una variable el
término producto. Por ...
CIRCUITOS DIGITALES II




             1       1       1       1                       1     0    0       1
             ...
CIRCUITOS DIGITALES II


      Es normal que dentro de un MK se encuentren grupos de 1, 2, 4 u 8
celdas e incluso 16 celda...
CIRCUITOS DIGITALES II


                                        Ejercicios propuestos

          Agrupe, simplifique y h...
CIRCUITOS DIGITALES II


      Agrupe, simplifique y halle las expresiones en los siguientes mapas de Karnaugh:




     ...
Upcoming SlideShare
Loading in...5
×

Guía del mapa de karnaugh

17,094

Published on

Published in: Education
1 Comment
3 Likes
Statistics
Notes
No Downloads
Views
Total Views
17,094
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
374
Comments
1
Likes
3
Embeds 0
No embeds

No notes for slide

Transcript of "Guía del mapa de karnaugh"

  1. 1. CIRCUITOS DIGITALES II MAPA DE KARNAUGH (MK) Es un método gráfico para la simplificación de ecuaciones lógicas booleanas y resolución de problemas lógicos combinatorios. Se basa en algunos teoremas boléanos para su funcionamiento. Para lograr una simplificación más efectiva y mejor, es necesario integrar dos elementos: Las reglas de agrupamiento y la práctica por parte del estudiante. Al igual que la tabla de la verdad permite ordenar las variables con su comportamiento en la salida, y pasar a la construcción de las ecuaciones lógicas y el dibujo del circuito lógico correspondiente. MK de 2, 3, 4 variables Están constituidos por un grupo de celdas. MK de 2 variables MK de 3 variables Celdas MK de 4 variables 1 Prof. Luis Zurita
  2. 2. CIRCUITOS DIGITALES II En los bordes superiores y laterales, se colocan los valores que pueden tomar las variables participantes en la ecuación lógica ó el problema que se está resolviendo, y en la barra diagonal el nombre de las variables. Recuerde el valor asignado a las variables: Ecuación Valor SDP 0:Variable Negada o Complementada ( A ) 1: Variable sin complementar ( A ) PDS 0: Variable sin complementar ( A ) 1: Variable Negada o Complementada ( A ) Datos que toman las variables Variables BC A B 0 1 00 01 11 10 A 0 0 1 1 Ahora: ¿que encontramos en cada celda? Recordando algo de matrices, cada expresión de celda estará constituida por el producto de las variables de la fila y la columna asociada a la celda, por ejemplo: La celda sombreada, está BC constituida por el producto de A (0)= 00 01 11 10 A A y BC (11)= BC, los cuales a su vez 0 0 0 1 0 están multiplicados por el 1 presente 1 en la celda. Por ejemplo veamos los 0 0 0 0 términos que estarían contentivos en un MK de 4 variables: 2 Prof. Luis Zurita
  3. 3. CIRCUITOS DIGITALES II CD AB 00 01 11 10 NOTA: La enumeración de 00 A BC D A BC D las variables se hace de menor a mayor, en código 01 Gray. Repase el concepto A BC D A BC D de Adyacencia. Rellene usted los recuadros que 11 faltan en cuanto a numeración se refiere. 10 Algunos autores, en vez de colocar unos y ceros para representar los valores que toman las variables, colocan directamente a la variable en su forma normal o complementada. Lo que al momento de determinar la expresión de la celda se hace de una forma directa. Evalúe usted el método que se le haga más fácil de entender y utilizar. Por cierto, ¿Este MK de tres variables es igual al mostrado en páginas anteriores? Demuéstrelo. C AB C C AB AB AB AB 3 Prof. Luis Zurita
  4. 4. CIRCUITOS DIGITALES II REGLAS DE AGRUPAMIENTO Y SIMPLIFICACION Cada grupo de celdas le permitirá a usted tener un término SDP ó PDS simplificado. A medida que logres formar un grupo más grande de celdas, el término será más reducido y simplificado. Repase las notas colocadas en la guía de ejercicios. Grupos válidos: 1, 2, 4, 8 y 16 celdas. Bajo el concepto de adyacencia. Con respecto a los otros números de grupos de celdas que no aparecen y que son NO VALIDOS, como por ejemplo, 3, 5, 6, 7 etc., Pueden ser agrupados en varios subgrupos dentro del número válido de celdas, recordando que cada grupo es un término simplificado. NOTA: Adyacencia: Se refiere a dos celdas en las cuales sólo cambia una variable entre una y otra celda. Para esto se basa en el código Gray visto por usted en Informática. Dos celdas diagonales NO son adyacentes, Generalmente son adyacentes las celdas contiguas en horizontal y/o vertical. EJEMPLOS GRUPOS DE 2 CELDAS: ¡Innecesario! 1 0 1 1 0 1 1 1 0 1 1 0 NOTA: Si una celda ya pertenece a un grupo, NO es necesario involucrarla a otro grupo, a menos que exista una celda adyacente a esta que la tome para hacer un grupo. El grupo subrayado es innecesario. Note que para este mismo ejemplo, hay 1 1 0 1 varias formas de agrupamiento, las cuales 1 0 1 1 respetando las normas, son perfectamente válidas, lo que le llevará a concluir que NO HAY 0 1 0 0 una sola forma de resolución sobre un MK. 1 0 0 1 4 Prof. Luis Zurita
  5. 5. CIRCUITOS DIGITALES II Por cada grupo de dos celdas propuesto, se reduce en una variable el término producto. Por ejemplo: Se tiene un MK de 2 variables, el término le queda en 1 variable, si tiene un MK de 3 variables, el término le queda en 2 variables y así sucesivamente. GRUPOS DE 4 CELDAS En este caso la expresión vale 1. Todas las 1 1 celdas son adyacentes entre si y se anulan o 1 1 neutralizan. 00 01 11 10 00 01 11 10 0 1 0 0 1 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 00 01 11 10 00 01 11 10 0 0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 0 1 1 0 Este agrupamiento NO es válido. Y lo podemos sustituir por 1 0 0 1 ejemplo por estos subgrupos: 0 1 1 0 5 Prof. Luis Zurita
  6. 6. CIRCUITOS DIGITALES II 1 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 NOTA: Cada grupo reduce en dos variables a las expresiones lógicas del total de las variables participantes. GRUPOS DE 8 CELDAS La expresión vale 1. Todas las celdas son 1 1 1 1 adyacentes entre sí y se neutralizan. 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 =1 0 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 NOTA: Cada grupo reduce en 3 variables a las expresiones lógicas del total de las variables participantes, lo que da origen a un término de una variable. Al igual que los MK anteriores, un grupo de 16 celdas, origina una expresión que vale 1. 6 Prof. Luis Zurita
  7. 7. CIRCUITOS DIGITALES II Es normal que dentro de un MK se encuentren grupos de 1, 2, 4 u 8 celdas e incluso 16 celdas, solitarios o combinados. ¿QUE HACEMOS CON CADA GRUPO FORMADO Y SIMPLIFICADO? Los sumamos si se trata de una expresión SDP o los multiplicamos si se trata de una expresión PDS, y conseguimos nuestra “Expresión Lógica Simplificada” NOTA: Todos los grupos fueron formados tomando como base los 1´s presentes. ¿Será posible hacer lo mismo tomando como base a los 0´s? ¿Cuál será la diferencia? VARIABLES IRRELEVANTES (Don´t Care) Estas variables se representan con la letra X u otra de su preferencia, y significa que pueden tomar el valor de 1 ó 0. Siguen las mismas normas y reglas de agrupamiento vistas hasta ahora, y son tomadas en cuenta, a CONVENIENCIA, es decir, si nos sirven para simplificar un grupo, las usamos, si no nos sirven, ¡No! Las usamos. Y nuestro resultado será más simplificado ó menos simplificado. NO debemos formar grupos de x, solamente ya que estaríamos adicionando términos ficticios e innecesarios. 1 0 1 0 0 x x 0 1 x x 1 1 0 0 x 1 x x x 1 0 1 x 1 0 x 1 0 0 x x x 1 0 0 0 0 0 Este grupo 0 1 x x 0 NO es válido 1 x 1 x ¿Cuándo Hacemos uso de las variables irrelevantes? Cuando no han sido definidas en las condiciones de funcionamiento y operación de un problema. Pueden Ocurrir o no. No afectan el funcionamiento de nuestro diseño lógico, más sin embargo, nos pueden servir para simplificar nuestras expresiones. 7 Prof. Luis Zurita
  8. 8. CIRCUITOS DIGITALES II Ejercicios propuestos  Agrupe, simplifique y halle las expresiones en los siguientes mapas de Karnaugh: 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1 1 0 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 0 1 0 0 1 Nota: 1. Coloque usted el conteo donde haga falta. 2. Recuerde: a. Un grupo de 1 celda da origen a un término producto de 4 variables. b. Un grupo de 2 celda da origen a un término producto de 3 variables. c. Un grupo de 4 celda da origen a un término producto de 2 variables. d. Un grupo de 8 celda da origen a un término producto de 1 variables. e. Un grupo de 16 celda da origen a que la expresión valga 1. 3. Una vez agrupados y simplificados se suman los términos mínimos encontrados. 4. Si considera los 1’s, la función encontrada es una S.D.P. 5. Si considera los 0’s la función encontrada es una P.D.S. 6. A medida de que los grupos sean más grandes, la función tendrá menos variables. 8 Prof. Luis Zurita
  9. 9. CIRCUITOS DIGITALES II  Agrupe, simplifique y halle las expresiones en los siguientes mapas de Karnaugh: 1 x 0 1 0 1 1 0 1 0 0 1 0 x x 1 x x x x x x x 1 1 1 0 x x x x x 0 x 1 x x x 0 1 x x x x 1 x 0 1 0 1 x x 1 0 1 1 1 0 0 0 1 1 x x 1 0 1 1 1 x x 1 1 1 x x 0 x 0 1 x x 1 1 1 1 x x x 0 x x 0 0 0 0 1 Nota: 1. Coloque usted el conteo donde haga falta. 2. X representa una condición irrelevante, o no ocurre o no tiene ningún efecto sobre la salida. 3. Se tratan como 1’s ó 0’s, A CONVENIENCIA. 4. Deben ser tomadas en cuenta a medida de que ayuden a simplificar el circuito. 5. Se siguen las mismas reglas de agrupamiento. 6. NO se pueden agrupar solo X. 7. A medida de que los grupos sean más grandes, la función tendrá menos variables. 9 Prof. Luis Zurita

×