Your SlideShare is downloading. ×
0
Curso E-investigación bibliográficaCiencias Biológicas y Biomédicas                Sesión          Martes 22, Jueves 24   ...
E-cienciaCiberinfraestructuraE-investigaciónGridsTransformación de la práctica científica  – Social  – Infraestructura  – ...
e-science/ cyberinfraestructure• cyberinfraestructure (USA)        • e-science (europe)• United States National Science   ...
Ciberinfraestructura•Entorno tecnológico-social que permite crear, difundiry preservar los datos, información y conocimien...
E-ciencia (e-science)• Resulta del uso y aplicación de la  Ciberinfraestructura en la práctica cientifica,• Se caracteriza...
E-cienciaUno de los primeros proyectos de e-ciencia fue el de el genoma  humano, se publicó en el 2001 en dos artículos co...
Genbank• Es una colección anotada de todas las secuencias de  nucleótidos a disposición del público y su traducción de  pr...
http://www.ncbi.nlm.nih.gov/genbank/genbankstats.html
Olson M, Hood L, Cantor C,Botstein D. A commonlanguage for physicalmapping of the humangenome. Science. 1989; 245(4925): 1...
800.000                                                     Documentos en PubMed (NIH)700.000600.000500.000400.000300.0002...
Nature. 2001 Feb 15;409(6822):860-921.       Initial sequencing and analysis of the human genome.Lander ES, Linton LM, Bir...
• The human genome holds an extraordinary trove of  information about human development, physiology, medicine  and evoluti...
FIGURA 1. Línea de tiempo de los análisis genómicos a gran escala.        Nature 409, 860-921(15 February 2001)doi:10.1038...
FIGURE 3. The automated production line for sample preparation at the WhiteheadInstitute, Center for Genome Research.Natur...
•   Science 16 February 2001:    Vol. 291. no. 5507, pp. 1304 - 1351    DOI: 10.1126/science.1058040•   REVIEW•   The Sequ...
•   A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was    generated by th...
Fig. 2. Flow diagram                                                      for sequencing                                  ...
http://genome.ucsc.edu/cgi-bin/hgTracks?org=human
Registro de PubMedhttp://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html
Definiciones•   Describes the new research environments that support advanced data    acquisition, data storage, data mana...
Cyberinfrastructure• Describes the new research environments that support advanced  data acquisition, data storage, data m...
Ciberinfraestructura• Infraestructura electrónica  – Sistemas computacionales  – Sensores digitales, instrumentos ,  – Red...
e-Science•   Originally referred to experiments that connected together a few powerful    computers located at different s...
e-investigación•   Actividades de investigación que utilizan una gama de capacidades avanzadas de    las TIC y abarca nuev...
e-investigación• e-journal: electronic• e-social sciences: de enabling (permitir)  (National Centre for e-Social Science, ...
e-research     e-science & Cyberinfrastructure                     – Computer                     – Internet• Resources   ...
e-research• resources                  • retrival• tools                      • managment• services                   • an...
• Colaboratorio: fusión de "colaboración" y  "laboratorio" ha sido acuñada para definir  la combinación.• Repositorio: col...
Proyectos
E-investigación bibliográfica• Investigación bibliográfica basada en el  uso de la Web y la ciberinfraestructura  – Recurs...
Tareas• Buscar tres ejemplos de e-ciencia  (ciberinfraestructura) de su área de  interés.• Marcarlo en Diigo y compartirlo...
• Este proyecto se lleva a cabo gracias al  financiamiento de: DGAPA, UNAM Proyecto PAPIME PE 201509
Licencia Creative                                                               Commons                                   ...
E ciencia
E ciencia
E ciencia
Upcoming SlideShare
Loading in...5
×

E ciencia

2,067

Published on

El impacto de las tecnología de la información y la comunicación en la práctica científica ha sido una transformación en todos los procesos científicos.

Published in: Education
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
2,067
On Slideshare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
9
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Transcript of "E ciencia"

  1. 1. Curso E-investigación bibliográficaCiencias Biológicas y Biomédicas Sesión Martes 22, Jueves 24 febrero de 2011 Layla Michán Departamento de Biología Evolutiva, Facultad de Ciencias, UNAM
  2. 2. E-cienciaCiberinfraestructuraE-investigaciónGridsTransformación de la práctica científica – Social – Infraestructura – Fondos – Colaboración – Comunicación
  3. 3. e-science/ cyberinfraestructure• cyberinfraestructure (USA) • e-science (europe)• United States National Science • United Kingdoms Office Foundation (NSF) blue-ribbon of Science and committee in 2003 Technology in 1999• Describes the new research • Will refer to the large environments that support advanced data acquisition, data scale science that will storage, data management, data increasingly be carried integration, data mining, data out through distributed visualization and other global collaborations computing and information enabled by the Internet processing services over the Internet
  4. 4. Ciberinfraestructura•Entorno tecnológico-social que permite crear, difundiry preservar los datos, información y conocimientosmediante la adquisición, almacenamiento, gestión,integración, informática, minería, visualización y otrosservicios a través de Internet (NSF 2003, 2007).•Incluye un conjunto interoperable de diversoselementos: –1) Infraestructura, los sistemas computacionales (hardware, software y redes), servicios, instrumentos y herramientas. –2) Colecciones de datos. –3) Grupos virtuales de investigación (colaboratorios y observatorios).
  5. 5. E-ciencia (e-science)• Resulta del uso y aplicación de la Ciberinfraestructura en la práctica cientifica,• Se caracteriza por la inter y multidisciplinariedad.• Colaboración, la participación de un gran número de investigadores (en algunos casos cientos) localizados en diversas regiones y con diferentes especialidades que se forman grupos trabajo (Hey y Trefethen, 2005; Barbera et al.,2009).
  6. 6. E-cienciaUno de los primeros proyectos de e-ciencia fue el de el genoma humano, se publicó en el 2001 en dos artículos con un día de diferencia en las revistas Nature y Science.Nature:Initial sequencing and analysis of the human genome 79 Autores 48 Instituciones181 referencias Todos los autores provenientes de departamentos de Ciencias Genómicas (o genética) exceptuando los siguientes: Department of Cellular and Structural Biology Department of Molecular Genetics Department of Molecular BiologyScience: The Sequence of the Human Genome 276 Autores 14 Instituciones 452 referencias Todos los autores provenientes de departamentos de Ciencias Genómicas (o genética) exceptuando los siguientes: Department of Biology e Informática Médica
  7. 7. Genbank• Es una colección anotada de todas las secuencias de nucleótidos a disposición del público y su traducción de proteínas.• Centro Nacional de Información Biotecnológica (NCBI)• European Molecular Biology Laboratory (EMBL) de datos de Bibliotecas del Instituto Europeo de Bioinformática (EBI)• DNA Data Bank de Japón (DDBJ).• Reciben las secuencias producidas en laboratorios de todo el mundo de más de 100.000 organismos distintos.• Crece a un ritmo exponencial, duplicando cada 10 meses. Suelte 134, producido en febrero de 2003, contenía más de 29300 millones de bases nucleotídicas en más de 23,0 millones de secuencias.• Se construye mediante el envío directo de los distintos laboratorios y de los centros de secuenciación a gran escala.
  8. 8. http://www.ncbi.nlm.nih.gov/genbank/genbankstats.html
  9. 9. Olson M, Hood L, Cantor C,Botstein D. A commonlanguage for physicalmapping of the humangenome. Science. 1989; 245(4925): 1434–1435. [PubMed]
  10. 10. 800.000 Documentos en PubMed (NIH)700.000600.000500.000400.000300.000200.000100.000 0 1870 1885 1900 1915 1930 1945 1960 1975 1985 1990 2000 2005 1865 1875 1880 1890 1895 1905 1910 1920 1925 1935 1940 1950 1955 1965 1970 1980 1995 Cerca de 20 millones octubre, 2010)
  11. 11. Nature. 2001 Feb 15;409(6822):860-921. Initial sequencing and analysis of the human genome.Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N,Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A,Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A,Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P,Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y,Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA,Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M,Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blöcker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L,Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS,Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P,Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E,Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A,Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ; International Human Genome Sequencing Consortium.
  12. 12. • The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.• Here we report the results of a collaboration involving 20 groups from the United States, the United Kingdom, Japan, France, Germany and China to produce a draft sequence of the human genome.• Of course, navigating information spanning nearly ten orders of magnitude requires computational tools to extract the full value.
  13. 13. FIGURA 1. Línea de tiempo de los análisis genómicos a gran escala. Nature 409, 860-921(15 February 2001)doi:10.1038/35057062http://www.nature.com/nature/journal/v409/n6822/fig_tab/409860a0_F1.html
  14. 14. FIGURE 3. The automated production line for sample preparation at the WhiteheadInstitute, Center for Genome Research.Nature 409, 860-921(15 February 2001)doi:10.1038/35057062http://www.nature.com/nature/journal/v409/n6822/images/409860ac.2.jpg
  15. 15. • Science 16 February 2001: Vol. 291. no. 5507, pp. 1304 - 1351 DOI: 10.1126/science.1058040• REVIEW• The Sequence of the Human Genome• J. Craig Venter,1* Mark D. Adams,1 Eugene W. Myers,1 Peter W. Li,1 Richard J. Mural,1 Granger G. Sutton,1 Hamilton O. Smith,1 Mark Yandell,1 Cheryl A. Evans,1Robert A. Holt,1 Jeannine D. Gocayne,1 Peter Amanatides,1 Richard M. Ballew,1 Daniel H. Huson,1 Jennifer Russo Wortman,1 Qing Zhang,1Chinnappa D. Kodira,1 Xiangqun H. Zheng,1 Lin Chen,1 Marian Skupski,1 Gangadharan Subramanian,1 Paul D. Thomas,1 Jinghui Zhang,1George L. Gabor Miklos,2 Catherine Nelson,3 Samuel Broder,1 Andrew G. Clark,4 Joe Nadeau,5 Victor A. McKusick,6 Norton Zinder,7 Arnold J. Levine,7Richard J. Roberts,8 Mel Simon,9 Carolyn Slayman,10 Michael Hunkapiller,11 Randall Bolanos,1 Arthur Delcher,1 Ian Dew,1 Daniel Fasulo,1 Michael Flanigan,1Liliana Florea,1 Aaron Halpern,1 Sridhar Hannenhalli,1 Saul Kravitz,1 Samuel Levy,1 Clark Mobarry,1 Knut Reinert,1 Karin Remington,1 Jane Abu-Threideh,1Ellen Beasley,1 Kendra Biddick,1 Vivien Bonazzi,1 Rhonda Brandon,1 Michele Cargill,1 Ishwar Chandramouliswaran,1 Rosane Charlab,1 Kabir Chaturvedi,1Zuoming Deng,1 Valentina Di Francesco,1 Patrick Dunn,1 Karen Eilbeck,1 Carlos Evangelista,1 Andrei E. Gabrielian,1 Weiniu Gan,1 Wangmao Ge,1Fangcheng Gong,1 Zhiping Gu,1 Ping Guan,1 Thomas J. Heiman,1 Maureen E. Higgins,1 Rui-Ru Ji,1 Zhaoxi Ke,1 Karen A. Ketchum,1 Zhongwu Lai,1 Yiding Lei,1Zhenya Li,1 Jiayin Li,1 Yong Liang,1 Xiaoying Lin,1 Fu Lu,1 Gennady V. Merkulov,1 Natalia Milshina,1 Helen M. Moore,1 Ashwinikumar K Naik,1Vaibhav A. Narayan,1 Beena Neelam,1 Deborah Nusskern,1 Douglas B. Rusch,1 Steven Salzberg,12 Wei Shao,1 Bixiong Shue,1 Jingtao Sun,1 Zhen Yuan Wang,1Aihui Wang,1 Xin Wang,1 Jian Wang,1 Ming-Hui Wei,1 Ron Wides,13 Chunlin Xiao,1 Chunhua Yan,1 Alison Yao,1 Jane Ye,1 Ming Zhan,1 Weiqing Zhang,1Hongyu Zhang,1 Qi Zhao,1 Liansheng Zheng,1 Fei Zhong,1 Wenyan Zhong,1 Shiaoping C. Zhu,1 Shaying Zhao,12 Dennis Gilbert,1 Suzanna Baumhueter,1Gene Spier,1 Christine Carter,1 Anibal Cravchik,1 Trevor Woodage,1 Feroze Ali,1 Huijin An,1 Aderonke Awe,1 Danita Baldwin,1 Holly Baden,1 Mary Barnstead,1Ian Barrow,1 Karen Beeson,1 Dana Busam,1 Amy Carver,1 Angela Center,1 Ming Lai Cheng,1 Liz Curry,1 Steve Danaher,1 Lionel Davenport,1 Raymond Desilets,1Susanne Dietz,1 Kristina Dodson,1 Lisa Doup,1 Steven Ferriera,1 Neha Garg,1 Andres Gluecksmann,1 Brit Hart,1 Jason Haynes,1 Charles Haynes,1 Cheryl Heiner,1Suzanne Hladun,1 Damon Hostin,1 Jarrett Houck,1 Timothy Howland,1 Chinyere Ibegwam,1 Jeffery Johnson,1 Francis Kalush,1 Lesley Kline,1 Shashi Koduru,1Amy Love,1 Felecia Mann,1 David May,1 Steven McCawley,1 Tina McIntosh,1 Ivy McMullen,1 Mee Moy,1 Linda Moy,1 Brian Murphy,1 Keith Nelson,1Cynthia Pfannkoch,1 Eric Pratts,1 Vinita Puri,1 Hina Qureshi,1 Matthew Reardon,1 Robert Rodriguez,1 Yu-Hui Rogers,1 Deanna Romblad,1 Bob Ruhfel,1Richard Scott,1 Cynthia Sitter,1 Michelle Smallwood,1 Erin Stewart,1 Renee Strong,1 Ellen Suh,1 Reginald Thomas,1 Ni Ni Tint,1 Sukyee Tse,1 Claire Vech,1Gary Wang,1 Jeremy Wetter,1 Sherita Williams,1 Monica Williams,1 Sandra Windsor,1 Emily Winn-Deen,1 Keriellen Wolfe,1 Jayshree Zaveri,1 Karena Zaveri,1Josep F. Abril,14 Roderic Guigó,14 Michael J. Campbell,1 Kimmen V. Sjolander,1 Brian Karlak,1 Anish Kejariwal,1 Huaiyu Mi,1 Betty Lazareva,1 Thomas Hatton,1Apurva Narechania,1 Karen Diemer,1 Anushya Muruganujan,1 Nan Guo,1 Shinji Sato,1 Vineet Bafna,1 Sorin Istrail,1 Ross Lippert,1 Russell Schwartz,1Brian Walenz,1 Shibu Yooseph,1 David Allen,1 Anand Basu,1 James Baxendale,1 Louis Blick,1 Marcelo Caminha,1 John Carnes-Stine,1 Parris Caulk,1Yen-Hui Chiang,1 My Coyne,1 Carl Dahlke,1 Anne Deslattes Mays,1 Maria Dombroski,1 Michael Donnelly,1 Dale Ely,1 Shiva Esparham,1 Carl Fosler,1 Harold Gire,1Stephen Glanowski,1 Kenneth Glasser,1 Anna Glodek,1 Mark Gorokhov,1 Ken Graham,1 Barry Gropman,1 Michael Harris,1 Jeremy Heil,1 Scott Henderson,1Jeffrey Hoover,1 Donald Jennings,1 Catherine Jordan,1 James Jordan,1 John Kasha,1 Leonid Kagan,1 Cheryl Kraft,1 Alexander Levitsky,1 Mark Lewis,1Xiangjun Liu,1 John Lopez,1 Daniel Ma,1 William Majoros,1 Joe McDaniel,1 Sean Murphy,1 Matthew Newman,1 Trung Nguyen,1 Ngoc Nguyen,1 Marc Nodell,1Sue Pan,1 Jim Peck,1 Marshall Peterson,1 William Rowe,1 Robert Sanders,1 John Scott,1 Michael Simpson,1 Thomas Smith,1 Arlan Sprague,1Timothy Stockwell,1 Russell Turner,1 Eli Venter,1 Mei Wang,1 Meiyuan Wen,1 David Wu,1 Mitchell Wu,1 Ashley Xia,1 Ali Zandieh,1 Xiaohong Zhu1
  16. 16. • A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies--a whole-genome assembly and a regional chromosome assembly--were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies toeightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional ~12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.
  17. 17. Fig. 2. Flow diagram for sequencing pipeline. Samples are received, selected, and processed in compliance with standard operating procedures, with a focus on quality within and across departments. Each process has defined inputs and outputs with the capability to exchange samples and data with both internal and external entities according to defined quality guidelines. Manufacturing pipeline processes, products, quality control measures, and responsible parties are indicated and are described further in the text.J. C. Venter et al., Science 291, 1304 -1351 (2001)
  18. 18. http://genome.ucsc.edu/cgi-bin/hgTracks?org=human
  19. 19. Registro de PubMedhttp://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html
  20. 20. Definiciones• Describes the new research environments that support advanced data acquisition, data storage, data management, data integration, data mining, data visualization and other computing and information processing services over the Internet (NSF, 2003).• The comprehensive infrastructure needed to capitalize on dramatic advances in information Technology. Integrates hardware for computing, data and networks, digitally-enabled sensors, observatories and experimental facilities, and an interoperable suite of software and middle-ware services and tools. Investments in interdiscip-linary teams and cyberinfrastructure professionals with expertise in algorithm development, system operations, and applications development are also essential to exploit the full power of cyberinfrastructure to create, disseminate, and preserve scientific data, information and knowledge (NSF 2007).• Technological solution to the problem of efficiently connecting data, computers, and people with the goal of enabling derivation of novel scientific theories and knowledge (Wikipedia 2009).
  21. 21. Cyberinfrastructure• Describes the new research environments that support advanced data acquisition, data storage, data management, data integration, data mining, data visualization and other computing and information processing services over the Internet (NSF, 2003).• The comprehensive infrastructure needed to capitalize on dramatic advances in information Technology. Integrates hardware for computing, data and networks, digitally-enabled sensors, observatories and experimental facilities, and an interoperable suite of software and middle-ware services and tools. Investments in interdiscip-linary teams and cyberinfrastructure professionals with expertise in algorithm development, system operations, and applications development are also essential to exploit the full power of cyberinfrastructure to create, disseminate, and preserve scientific data, information and knowledge (NSF 2007).• Technological solution to the problem of efficiently connecting data, computers, and people with the goal of enabling derivation of novel scientific theories and knowledge (Wikipedia 2009).
  22. 22. Ciberinfraestructura• Infraestructura electrónica – Sistemas computacionales – Sensores digitales, instrumentos , – Redes• Software – Aplicaciones – Utilidades – Herramientas – Servicios• Colecciones de datos y datos,
  23. 23. e-Science• Originally referred to experiments that connected together a few powerful computers located at different sites and, later, a very large number of modest PCs across the world in order to undertake enormous calculations or process huge amounts of data. The coordination of geographically dispersed computing and data resources has become known as the Grid. This is shorthand for the emerging standards and technology – hardware and software – being developed to enable and simplify the sharing of resources. The analogy is an electric power grid, which comprises numerous varied resources connected together to contribute power into a shared pool that users can easily access when they need it.• What is exciting about the Grid is that the combination of extensive connectivity, massive computer power and vast quantities of digitized data – all three of which are still rapidly expanding – making possible new applications that are orders of magnitude more potent than even a few years ago.• The term e-research is sometimes used instead of e-science, with the advantage that gives more emphasis to the end result of better, richer, faster or new research results, rather than the technologies used to get them.National Centre for e-Social Science. 2008. Frequently Asked Questions. Diponible en: http://www.ncess.ac.uk/about_eSS/faq/?q=General_1#General_1
  24. 24. e-investigación• Actividades de investigación que utilizan una gama de capacidades avanzadas de las TIC y abarca nuevas metodologías de investigación que salen de un mayor acceso a: – Las comunicaciones de banda ancha de redes, instrumentos de investigación y las instalaciones, redes de sensores y repositorios de datos; – Software y servicios de infraestructura que permitan garantizar la conectividad e interoperabilidad; – Aplicación herramientas que abarcan la disciplina de instrumentos específicos y herramientas de interacción. – Avanzar y aumentar, en lugar de reemplazar las tradicionales metodologías de investigación,• Permitirá a los investigadores para llevar a cabo su labor de investigación más creativa, eficiente y colaboración a larga distancia y difundir sus resultados de la investigación con un mayor efecto.• Colaboración• Nuevos campos de investigación emergentes, utilizando nuevas técnicas de minería de datos y el análisis, avanzados algoritmos computacionales y de redes de intercambio de recursos.
  25. 25. e-investigación• e-journal: electronic• e-social sciences: de enabling (permitir) (National Centre for e-Social Science, 2008)• e- research: alta velocidad, red digital disponible a cualquir hora en cualquier lugar (Anderson y Kanuka, 2002)
  26. 26. e-research e-science & Cyberinfrastructure – Computer – Internet• Resources – Databases• Tools – Collaboratories – Reservories• Services – Grid
  27. 27. e-research• resources • retrival• tools • managment• services • analysis • customize • control • automatic
  28. 28. • Colaboratorio: fusión de "colaboración" y "laboratorio" ha sido acuñada para definir la combinación.• Repositorio: colección de e-prints
  29. 29. Proyectos
  30. 30. E-investigación bibliográfica• Investigación bibliográfica basada en el uso de la Web y la ciberinfraestructura – Recursos de la Web 2.0 en evolución a la 3.0 – Aplicaciones, herramientas, servicios. – Colecciones de datos digitales (repositorios, bases de datos).• Análisis sistémico de la literatura• Meta-análisis
  31. 31. Tareas• Buscar tres ejemplos de e-ciencia (ciberinfraestructura) de su área de interés.• Marcarlo en Diigo y compartirlo al grupo.• Describir uno de ellos en una cuartilla.• Enviarlo al grupo en documento google.
  32. 32. • Este proyecto se lleva a cabo gracias al financiamiento de: DGAPA, UNAM Proyecto PAPIME PE 201509
  33. 33. Licencia Creative Commons Forma de citar este trabajo Michán, L. 2011. Presentaciónhttp://creativecommons.org/licenses/by/3.0/deed.es_GT
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×