Uncertainty for solar products assessment and                   benchmarking       J. Polo, L. Ramírez, L.F.Zarzalejo, L. ...
Uncertainty parametersParameters based on deviation of data values (careful with notation)                                ...
Daily analysis (Uncertainty parameters)                                                               KSI OVER            ...
Daily analysis (KS Test)                               0.1                                                                ...
Hourly analysis (Uncertainty parameters)                                                 IKS OVER                         ...
Hourly analysis (KS Test)                              0.1                                              Coruña            ...
Towards standardization: open issues for    discussion Solar Radiation Product uncertainty: users require one number  (Ra...
Future activityBenchmarking exercise on one selected pixel forone year of hourly global irradiation?Elaboration of a guide...
Upcoming SlideShare
Loading in...5
×

Uncertainty for solar products assessment and benchmarking

109

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
109
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
3
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Uncertainty for solar products assessment and benchmarking

  1. 1. Uncertainty for solar products assessment and benchmarking J. Polo, L. Ramírez, L.F.Zarzalejo, L. Martín, A. Navarro CIEMAT (Energy department – Solar Platform of Almería)4th Meeting IEA SHC Task 36 Hamburg 23-25 Oct 2007
  2. 2. Uncertainty parametersParameters based on deviation of data values (careful with notation) n ( yi − g i ) MRE = ∑ × 100  Mean Relative Error (MRE) n gi ∑ ( gi − yi ) / n i =1 i =1  Mean Bias Error (MBE) MBE = n × 100 ∑ gi / n n i =1 ∑ ( gi − yi )2 / n  RMSE RMSE = i =1 n × 100 ∑ gi / n i =1Parameters based on deviation of distribution functions  KSI and OVER (Integral of KS test complete and over critical value)  KSE KSE = ( KSI × w1 + OVER × w2) / 2 RIO = ( RMSE + KSE ) / 2  RIO 4th Meeting IEA SHC Task 36 Hamburg 23-25 Oct 2007
  3. 3. Daily analysis (Uncertainty parameters) KSI OVER KSE = ( + )/2 RIO = ( RMSE + KSE ) / 2 2 1000 Statistical uncertainty parameters dor daily irradiation Uncertainty parameters for daily irradiation 20 100 MRE RMSE MBE 90 IKS 15 RMSE OVER 80 KSE-p RIO-p 70Uncertainty parameter (%) 10 60 5 50 40 0 30 20 -5 10 -10 0 Caceres Madrid Murcia Coruña Valencia Santander Valladolid Caceres Madrid Murcia Coruña Valencia Santander Valladolid 4th Meeting IEA SHC Task 36 Hamburg 23-25 Oct 2007
  4. 4. Daily analysis (KS Test) 0.1 Coruña 0.09 Caceres Madrid 0.08 Murcia Santander 0.07 Distances between CDFs Valencia 0.06 Valladolid 0.05 0.04 0.03 0.02 0.01 0 0 2000 4000 6000 8000 10000 12000 Rangos de rad4th Meeting IEA SHC Task 36 Hamburg 23-25 Oct 2007
  5. 5. Hourly analysis (Uncertainty parameters) IKS OVER KSE = ( + )/2 RIO = ( RMSE + KSE ) / 2 1000 2 Statistical uncertainty for hourly irradiation Uncertainty parameters for hourly irradiation 30 100 RMSE MRE 90 IKS 25 MBE RMSE OVER 80 KSE-p 20 RIO-p 70Uncertainty parameter (%) 60 15 50 10 40 5 30 20 0 10 -5 0 Murcia Caceres Madrid Valladolid Santander Valencia Coruña Murcia Caceres Madrid Valladolid Santander Valencia Coruña 4th Meeting IEA SHC Task 36 Hamburg 23-25 Oct 2007
  6. 6. Hourly analysis (KS Test) 0.1 Coruña 0.09 Caceres 0.08 Madrid Murcia 0.07 Distances between CDFs Santander 0.06 Valencia 0.05 Valladolid 0.04 0.03 0.02 0.01 0 0 200 400 600 800 1000 1200 Irradiation (Wh m-2)4th Meeting IEA SHC Task 36 Hamburg 23-25 Oct 2007
  7. 7. Towards standardization: open issues for discussion Solar Radiation Product uncertainty: users require one number (Radiation ± U) . Candidates: RMSE, MBE, relative error… Problems with normalization. Model assessment: we look for more information than uncertainty. strengths and shortcomings of models is also required. Candidates: K-S Test in addition to uncertainty measures MBE, RMSE, deviations at different solar elevation angles, … are useful for this purpose. Benchmarking of models: We should know a priori the capabilities of different models and we want to compare their response under the same conditions. Candidates: RIO parameter compiles KS test and RMSE information in one single parameter. 4th Meeting IEA SHC Task 36 Hamburg 23-25 Oct 2007
  8. 8. Future activityBenchmarking exercise on one selected pixel forone year of hourly global irradiation?Elaboration of a guide for uncertainty (MESoR)?4th Meeting IEA SHC Task 36 Hamburg 23-25 Oct 2007
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×