BIN06-IS Understanding the Data Mining Add-Ins for Excel 2007 Lynn Langit MSDN Developer Evangelist – Southern California ...
Session Prerequisites <ul><li>Working SQL Server 2005 Developer </li></ul><ul><li>Understanding of OLAP concepts </li></ul...
Session Objectives and Agenda <ul><ul><li>Understand how to set up a development environment for working with Excel 2007 D...
What and Why Data Mining? Predictive Analytics Presentation Exploration Discovery Passive Interactive Proactive Role of So...
Data Mining Problems
From Scenarios to Tasks
From Tasks to Techniques
Microsoft’s Predictive Analytics Data Mining SQL extensions (DMX) Application Developer Data Mining Specialist Microsoft D...
Data Mining Add-ins for Office 2007 Table Analysis Tools for Excel 2007 Data Mining Template for Visio 2007 Data Mining Cl...
Microsoft Data Mining Lifecycle  CRISP-DM SSAS (Data Mining) Excel SSAS (DSV) Query Excel SSIS SSAS SSRS Excel Your Apps S...
Lifecycle – Understand & Prepare Excel Explore Data Clean Data Add-ins
Lifecycle - Prepare Excel Partition Data ADOMD.Net Add-ins SQL Server Analysis Services Data Source Data
Understand & Prepare specifics
Demo 1 – Explore / Clean / Partition Data
Lifecycle – Model & Evaluate Excel Modeling & Evaluation Add-ins SQL Server Analysis Services Data Source Data Mining Models
Modeling Specifics
Demo 3 – Modeling
Evaluation Specifics
Demo 4 – Evaluation
Data Mining – Logical Model Mining Model Mining Model Training Data DB data Client data Application data Data Mining Engin...
Data Mining - Physical Model Analysis Services Server Mining Model Data Mining Algorithm Data Source Your Application OLE ...
Architecture Excel Modeling Query Add-ins SQL Server Analysis Services Data Source Data Mining Models
Architecture Excel Modeling Query Add-ins SQL Server Analysis Services Data Source Data Mining Models
Architecture Excel Modeling Query Add-ins SQL Server Analysis Services Data Source Data Mining Models
Configuration <ul><li>Model Creation/Management </li></ul><ul><ul><li>Database Administrators </li></ul></ul><ul><ul><li>S...
Deployment <ul><li>Browse </li></ul><ul><ul><li>Copy to Excel </li></ul></ul><ul><ul><li>Drillthrough </li></ul></ul><ul><...
Advanced Techniques - DMX
Excel Functions* <ul><ul><li>DMPREDICTTABLEROW  ( Connection, ModelName,   PredictionResult, TableRowRange [, string Comma...
Data Mining Extensions (DMX)  CREATE MINING MODEL  CreditRisk (CustID   LONG KEY, Gender  TEXT DISCRETE, Income    LONG CO...
CREATE MINING MODEL CREATE MINING MODEL MyModel ( [CustID] LONG KEY, [Gender] TEXT  DISCRETE, [Marital Status] TEXT DISCRE...
DMX Column Expressions <ul><li>Predictable Columns </li></ul><ul><li>Source Data Columns </li></ul><ul><li>Functions </li>...
Data Mining Interfaces – XMLA ++ XMLA Over TCP/IP XMLA Over HTTP Analysis Server (msmdsrv.exe) OLAP Data Mining Server ADO...
Summary <ul><li>Familiar client for SQL Server Data Mining </li></ul><ul><ul><li>Model Creators </li></ul></ul><ul><ul><li...
Resources Technical Communities, Webcasts, Blogs, Chats & User Groups http://www.microsoft.com/communities/default.mspx   ...
BI Resources from Lynn Langit Foundations of SQL Server 2005 Business Intelligence published by Apress in April 2007 Blog:...
Q&A
<ul><li>BIN302 Microsoft Office Excel and Analysis Services: An In-Depth Look at Integration </li></ul><ul><li>OFF312 Usin...
© 2007 Microsoft Corporation. All rights reserved. This presentation is for informational purposes only. MICROSOFT MAKES N...
Upcoming SlideShare
Loading in...5
×

Data Mining for Developers

4,431

Published on

Published in: Business, Technology
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
4,431
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
904
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide
  • Data Mining for Developers

    1. 1. BIN06-IS Understanding the Data Mining Add-Ins for Excel 2007 Lynn Langit MSDN Developer Evangelist – Southern California http://blogs.msdn.com/SoCalDevGal
    2. 2. Session Prerequisites <ul><li>Working SQL Server 2005 Developer </li></ul><ul><li>Understanding of OLAP concepts </li></ul><ul><li>Working SQL Server Analysis Server 2005 Developer </li></ul><ul><li>Interest in or basic knowledge of Data Mining concepts </li></ul>
    3. 3. Session Objectives and Agenda <ul><ul><li>Understand how to set up a development environment for working with Excel 2007 Data Mining Extensions </li></ul></ul><ul><ul><li>Understand the core functionality of the Data Mining extensions </li></ul></ul><ul><ul><li>Understand the advanced functionality of the Data Mining extensions. </li></ul></ul>
    4. 4. What and Why Data Mining? Predictive Analytics Presentation Exploration Discovery Passive Interactive Proactive Role of Software Business Insight Canned reporting Ad-hoc reporting OLAP Data mining
    5. 5. Data Mining Problems
    6. 6. From Scenarios to Tasks
    7. 7. From Tasks to Techniques
    8. 8. Microsoft’s Predictive Analytics Data Mining SQL extensions (DMX) Application Developer Data Mining Specialist Microsoft Dynamics CRM Analytics Foundation SQL Server 2005 Business Intelligence Development Studio Microsoft SQL Server 2005 Analysis Services Information Worker Data Mining Add-ins for the 2007 Microsoft Office system Microsoft SQL Server 2005 Data Mining BI Analyst Custom Algorithms
    9. 9. Data Mining Add-ins for Office 2007 Table Analysis Tools for Excel 2007 Data Mining Template for Visio 2007 Data Mining Client for Excel 2007
    10. 10. Microsoft Data Mining Lifecycle CRISP-DM SSAS (Data Mining) Excel SSAS (DSV) Query Excel SSIS SSAS SSRS Excel Your Apps SSIS SSAS Excel Data www.crisp-dm.org Business Understanding Data Understanding Data Preparation Modeling Evaluation Deployment
    11. 11. Lifecycle – Understand & Prepare Excel Explore Data Clean Data Add-ins
    12. 12. Lifecycle - Prepare Excel Partition Data ADOMD.Net Add-ins SQL Server Analysis Services Data Source Data
    13. 13. Understand & Prepare specifics
    14. 14. Demo 1 – Explore / Clean / Partition Data
    15. 15. Lifecycle – Model & Evaluate Excel Modeling & Evaluation Add-ins SQL Server Analysis Services Data Source Data Mining Models
    16. 16. Modeling Specifics
    17. 17. Demo 3 – Modeling
    18. 18. Evaluation Specifics
    19. 19. Demo 4 – Evaluation
    20. 20. Data Mining – Logical Model Mining Model Mining Model Training Data DB data Client data Application data Data Mining Engine Data To Predict Predicted Data Mining Model DB data Client data Application data “ Just one row ” Data Mining Engine
    21. 21. Data Mining - Physical Model Analysis Services Server Mining Model Data Mining Algorithm Data Source Your Application OLE DB/ ADOMD/ XMLA Deploy BI Dev Studio (Visual Studio) App Data
    22. 22. Architecture Excel Modeling Query Add-ins SQL Server Analysis Services Data Source Data Mining Models
    23. 23. Architecture Excel Modeling Query Add-ins SQL Server Analysis Services Data Source Data Mining Models
    24. 24. Architecture Excel Modeling Query Add-ins SQL Server Analysis Services Data Source Data Mining Models
    25. 25. Configuration <ul><li>Model Creation/Management </li></ul><ul><ul><li>Database Administrators </li></ul></ul><ul><ul><li>Session Mining Models </li></ul></ul><ul><li>Model Application </li></ul><ul><ul><li>Permissions on models </li></ul></ul><ul><ul><li>Permissions on data sources </li></ul></ul>
    26. 26. Deployment <ul><li>Browse </li></ul><ul><ul><li>Copy to Excel </li></ul></ul><ul><ul><li>Drillthrough </li></ul></ul><ul><li>Query </li></ul><ul><ul><li>Default </li></ul></ul><ul><ul><li>Advanced </li></ul></ul><ul><li>Excel Services </li></ul><ul><li>Manage models and structures </li></ul><ul><ul><li>Export/Import </li></ul></ul><ul><ul><li>Rename </li></ul></ul><ul><li>Connection </li></ul><ul><ul><li>Database </li></ul></ul><ul><ul><li>Trace </li></ul></ul>
    27. 27. Advanced Techniques - DMX
    28. 28. Excel Functions* <ul><ul><li>DMPREDICTTABLEROW ( Connection, ModelName, PredictionResult, TableRowRange [, string CommaSeparatedColumnNames] ) </li></ul></ul><ul><ul><li>DMPREDICT ( Connection, Model, PredictionResult, Value1, Name1, [...,Value32, Name32] ) </li></ul></ul><ul><ul><li>DMCONTENTQUERY (Connection, Model, PredictionResult [, WhereClause]) </li></ul></ul>
    29. 29. Data Mining Extensions (DMX) CREATE MINING MODEL CreditRisk (CustID LONG KEY, Gender TEXT DISCRETE, Income LONG CONTINUOUS, Profession TEXT DISCRETE, Risk TEXT DISCRETE PREDICT) USING Microsoft_Decision_Trees INSERT INTO CreditRisk (CustId, Gender, Income, Profession, Risk) Select CustomerID, Gender, Income, Profession,Risk From Customers Select NewCustomers.CustomerID, CreditRisk.Risk, PredictProbability(CreditRisk.Risk) FROM CreditRisk PREDICTION JOIN NewCustomers ON CreditRisk.Gender=NewCustomer.Gender AND CreditRisk.Income=NewCustomer.Income AND CreditRisk.Profession=NewCustomer.Profession
    30. 30. CREATE MINING MODEL CREATE MINING MODEL MyModel ( [CustID] LONG KEY, [Gender] TEXT DISCRETE, [Marital Status] TEXT DISCRETE, [Education] TEXT DISCRETE, [Home Ownership] TEXT DISCRETE PREDICT, [Age] LONG CONTINUOUS, [Income] DOUBLE CONTINUOUS ) USING Microsoft_Decision_Trees
    31. 31. DMX Column Expressions <ul><li>Predictable Columns </li></ul><ul><li>Source Data Columns </li></ul><ul><li>Functions </li></ul><ul><ul><li>Predict </li></ul></ul><ul><ul><ul><li>“ Workhorse” </li></ul></ul></ul><ul><ul><ul><li>Discrete scalar values </li></ul></ul></ul><ul><ul><ul><li>Continuous scalar values </li></ul></ul></ul><ul><ul><ul><li>Associative nested tables </li></ul></ul></ul><ul><ul><ul><li>Sequence nested tables </li></ul></ul></ul><ul><ul><ul><li>Time Series </li></ul></ul></ul><ul><ul><ul><li>Overloaded to </li></ul></ul></ul><ul><ul><ul><ul><li>PredictAssociation </li></ul></ul></ul></ul><ul><ul><ul><ul><li>PredictSequence </li></ul></ul></ul></ul><ul><ul><ul><ul><li>PredictTimeSeries </li></ul></ul></ul></ul><ul><ul><li>PredictProbability </li></ul></ul><ul><ul><li>PredictSupport </li></ul></ul><ul><ul><li>PredictHistogram </li></ul></ul><ul><ul><li>Cluster </li></ul></ul><ul><ul><li>ClusterProbability </li></ul></ul><ul><ul><li>GetNodeId </li></ul></ul><ul><ul><li>IsInNode </li></ul></ul><ul><li>Arithmetic operators </li></ul><ul><li>Stored Procedure </li></ul><ul><li>Subselect </li></ul><ul><ul><li>Select from nested tables </li></ul></ul>
    32. 32. Data Mining Interfaces – XMLA ++ XMLA Over TCP/IP XMLA Over HTTP Analysis Server (msmdsrv.exe) OLAP Data Mining Server ADOMD.NET .Net Stored Procedures Microsoft Algorithms Third Party Algorithms OLEDB for OLAP/DM ADO/DSO Any Platform, Any Device C++ App VB App .Net App AMO Any App ADOMD.NET WAN DM Interfaces
    33. 33. Summary <ul><li>Familiar client for SQL Server Data Mining </li></ul><ul><ul><li>Model Creators </li></ul></ul><ul><ul><li>Model Users </li></ul></ul><ul><ul><li>Excel Data or Server Data </li></ul></ul><ul><li>Implement the full DM Cycle </li></ul><ul><ul><li>Data Understanding </li></ul></ul><ul><ul><li>Data Preparation </li></ul></ul><ul><ul><li>Modeling </li></ul></ul><ul><ul><li>Validation </li></ul></ul><ul><ul><li>Deployment </li></ul></ul>
    34. 34. Resources Technical Communities, Webcasts, Blogs, Chats & User Groups http://www.microsoft.com/communities/default.mspx Microsoft Developer Network (MSDN) & TechNet http://microsoft.com/msdn http://microsoft.com/technet Trial Software and Virtual Labs http://www.microsoft.com/technet/downloads/trials/default.mspx Microsoft Learning and Certification http://www.microsoft.com/learning/default.mspx SQL Server Data Mining http://www.sqlserverdatamining.com http://www.microsoft.com/bi/bicapabilities/data-mining.aspx
    35. 35. BI Resources from Lynn Langit Foundations of SQL Server 2005 Business Intelligence published by Apress in April 2007 Blog: http://blogs.msdn.com/SoCalDevGal
    36. 36. Q&A
    37. 37. <ul><li>BIN302 Microsoft Office Excel and Analysis Services: An In-Depth Look at Integration </li></ul><ul><li>OFF312 Using Data in Excel Solutions Built with Visual Studio Tools for the Office System </li></ul>Related Content
    38. 38. © 2007 Microsoft Corporation. All rights reserved. This presentation is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.
    1. A particular slide catching your eye?

      Clipping is a handy way to collect important slides you want to go back to later.

    ×