Application Of Geographical Aes (Adaptive Education System

2,428 views

Published on

my dissertation start

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
2,428
On SlideShare
0
From Embeds
0
Number of Embeds
55
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • Application Of Geographical Aes (Adaptive Education System

    1. 1. Application of Geographical AES (Adaptive Education System) 授課教師 : 徐勝一教授 報告學生 : 王耀輝
    2. 2. Our Vision <ul><li>一些長期背負著的包袱也急待改革。作為新時期的教育工作者,依然拿過去在學校所學的知識,教導我們現在的學生 去面對未來的挑戰顯然不足。 以 學生為中心開展教學 、 照顧不同學生學習需要的適性教育 、 以啟發學生創新思維的創思教育 、 加強信息技術教育 是當前四地課程改革的重要課題。 </li></ul>Source:2007 年兩岸四地中學史地課程研討會
    3. 3. Contract of Research Adaptive Education Geographical Education ICT in Education (2) (1) (3) (4)
    4. 4. What is ICT? <ul><li>The term, information and communication technologies (ICT), refers to forms of technology that are used to transmit, store, create, display, share or exchange information by electronic means . This broad definition of ICT includes such technologies as radio, television, video, DVD, telephone (both fixed line and mobile phones), satellite systems, computer and network hardware and software ; as well as the equipment and services associated with these technologies, such as videoconferencing, e-mail and blogs . </li></ul>Source: UNESCO Bangkok
    5. 5. ICT in Education(1/2) <ul><ul><li>將資訊科技中可供 教與學 所用的各項優勢資源與媒體, 平順且適切地置入 各科教與學過程的各個環節 ( 顏龍源 , 2000) </li></ul></ul><ul><ul><ul><li>不強調資訊科技的結果與表現 </li></ul></ul></ul><ul><ul><ul><li>重視融入的觀念、過程和科技的可用性 </li></ul></ul></ul><ul><ul><li>教師運用電腦科技於 課堂教學 與 課後活動 上,以培養學生運用科技與資訊的能力和主動探索與研究的精神,讓學生 獨立思考與解決問題 ( 張國恩 ,1999) </li></ul></ul>
    6. 6. ICT in Education (2/2) <ul><li>資訊融入教學的實施 </li></ul><ul><ul><li>選擇 合適的單元或主題 </li></ul></ul><ul><ul><ul><li>不是為了融入而融入 </li></ul></ul></ul><ul><ul><ul><li>運用將資訊科技解決教學上的問題,不是資訊取代教學 </li></ul></ul></ul><ul><ul><li>選擇 合適的資訊工具或資源 </li></ul></ul><ul><ul><ul><li>不是為了展現教師個人的資訊技術 </li></ul></ul></ul><ul><ul><ul><li>可促進教學成效才是主要考量 </li></ul></ul></ul><ul><ul><ul><li>教師應將時間運用在設計教學活動,而非製作教學工具或資源 </li></ul></ul></ul><ul><ul><ul><li>教師的資訊素養往往與資訊融入教學的實施成效無關 ( 黃國楨 ,2006) </li></ul></ul></ul>
    7. 7. Adaptive Education(1/2) <ul><li>人際關係智慧 Interpersonal Intelligence, </li></ul><ul><li>內省智慧 Intrapersonal Intelligence, </li></ul><ul><li>肢體動覺智慧 Bodily/Kinesthetic Intelligence, </li></ul><ul><li>and 自然觀察智慧 Naturalist Intelligence (Howard Gardner,1983). </li></ul>每個人都是獨特的自我,教師不該以單一教學法對待每一個學生。 <ul><li>空間智慧 (Visual/Spatial Intelligence), </li></ul><ul><li>音樂智慧 (Musical Intelligence), </li></ul><ul><li>語言智慧 (Verbal/Linguistic Intelligence), </li></ul><ul><li>邏輯智慧 (Logical/Mathematical Intelligence), </li></ul>多元智慧理論 ( multiple intelligences ):
    8. 8. Adaptive Education(2/2) <ul><li>一位 稱職的教師 想要進行有效率的教學與輔導,必須從 智力 、 性向 、 興趣 、 成就 、 情意 特質等方面,深切了解學生的個別差異和發展需求,始能誘導每個學生從事有意義的學習活動。在 整個教育進程 中,教師必須參照學生個別差異現象, 不斷提供符合其發展階段的教育情境 ,適時給予各種發展機會,使每個學生的潛能得以發揮,並從學習活動中獲得成功的滿足,以加強自信心,保持並增進繼續學習的興趣,謀求自我的充分發展。 </li></ul>簡茂發 (1999) , 「人的教育」之省思
    9. 9. Therefore, we need to <ul><li>Adaptive Assessment </li></ul><ul><li>Diagnosis </li></ul><ul><li>Adaptive Tutoring </li></ul><ul><li>Adaptive Remedial Instruction </li></ul><ul><li>…… </li></ul>
    10. 10. Adaptive Geographical Education <ul><li>基於教育均等的理念,亦即基於應該讓每一個進入中學的學生或是每一個學習地理課程的學生均有充分發展其潛力之機會的理念… . 將輔導的概念融入教學過程,即一方面 力求變化教學策略和方法 ,另一方面時時 考慮個別學生的學習興趣、能力和困難,並實施學業輔導及補救教學 … ..( 施添福, 1989) </li></ul>
    11. 11. Geographical Education Model Source: 施添福, 1989 ,中學地理教學理論與實際 教學活動設計 實施教學 形成性與診斷性評量 總結性評量 學習情境與活動 單元技能教學目標 地理課程目標 單元地理教材 單元情意教學目標 單元認知教學目標
    12. 12. <ul><li>Adaptive Assessment </li></ul><ul><li>Diagnosis </li></ul><ul><li>Adaptive Tutoring </li></ul><ul><li>Adaptive Remedial Instruction </li></ul>Adaptive representation and navigation 教學活動設計 實施教學 形成性與診斷性評量 總結性評量
    13. 13. ICT and Geographical Education(1) <ul><li>How ICT may affect geographical learning paradigms (Hill & Solem, 1999; Rich et al. , 2000; Solem, 2000) </li></ul><ul><li>Multimedia enhances learning and teaching in geography (Castleford et al. , 1998; O’Tuathail & McCormack, 1998; Lemke & Ritter, 2000; Vincent, 2000; Reed & Mitchell, 2001;Johnson, 2002; Shroder et al. , 2002) </li></ul>
    14. 14. ICT and Geographical Education(2) <ul><li>Use their ICT capability to assist and progress their learning in geography ; </li></ul><ul><li>Engage in higher-order thinking skills , for example, by using ICT to undertake detailed analysis when modelling data; </li></ul><ul><li>Demonstrate, apply and reinforce their understanding of ICT capability within a range of subject contexts. The transferability of ICT capability is an important aspect of progression in pupils’ knowledge, skills and understanding(DfES, 2004). </li></ul>Source: ICT in Geography
    15. 15. ICT and Geographical Education(2) <ul><li>地理科學習加油站 --- assist and progress their learning in geography 。 </li></ul><ul><li>GIS 高中地理加油站 --- higher-order thinking skills 。 </li></ul><ul><li>95 課綱總綱 ---- 教學實施 </li></ul><ul><li>將資訊教育融入各科教材,有效利用多元教學媒體與社區資源,以提昇教學效果。 </li></ul>
    16. 16. But Seldom Geographi c al Education Researches deal with AES <ul><li>Geography and Multiple Abilities Program: Innovations in Teacher Education-Reconnecting Teaching to Students’ Needs (Gregg et al .,1995 ) </li></ul><ul><li>Learning styles among geography undergraduates (Healey et al.,2005) </li></ul><ul><li>Can Adaptive Hypermedia Meet the Expectations of Teachers (Monthienvichienchai, 2006 ) </li></ul>
    17. 17. Even Seldom on Assessment Source: Rutherford, 2002
    18. 18. Source: Rutherford, 2002
    19. 19. 教學策略 <ul><ul><li>教學策略知識庫 : </li></ul></ul><ul><ul><ul><li>教學活動模型 (Instructional Activity Model, IAM) </li></ul></ul></ul><ul><ul><ul><li>學生特質探勘 (Student Characteristic Mining) </li></ul></ul></ul><ul><ul><ul><li>學習路徑探勘 (Learning Path Mining) </li></ul></ul></ul><ul><ul><ul><li>教學策略精練探勘 (Teaching Strategy Refinement Mining)( 曾憲雄, 2006) </li></ul></ul></ul>
    20. 20. Source: 曾憲雄, 2006
    21. 21. Practices from other subjects <ul><li>Adaptive Assessment-----Data Mining </li></ul><ul><li>Adaptive tutoring----Data Mining </li></ul>Possible Methods: Fuzzy Logic , Genetic Algorithms and Decision Trees (DT)
    22. 22. Application of Fuzzy Logic <ul><li>推論出此學習者的學習狀態,並給予適當的幫助 </li></ul><ul><ul><li>學習效率 (Efficiency of Learning) </li></ul></ul><ul><ul><li>學習意願 (Willingness) </li></ul></ul><ul><ul><li>耐心度 (Patience) </li></ul></ul><ul><ul><li>專心度 (Concentration) </li></ul></ul><ul><ul><li>閒置 (Idleness) </li></ul></ul><ul><ul><li>理解度 (Comprehension) </li></ul></ul><ul><ul><li>聊天 (Chat) (Gwo-Jen Hwang , 1998) </li></ul></ul>
    23. 23. 耐心度 (Patience) 分析 <ul><ul><li>學生瀏覽一個畫面的持續度 </li></ul></ul><ul><ul><li>分析依據:畫面學習時間 / 預估學習時間 </li></ul></ul>模糊推理法則 If patience is low Then record this status and warn the student. If patience is average Then keep the current status. If patience is high Then keep the current status.
    24. 24. Result
    25. 25. Application of Evolutionary Computation <ul><li>1.On Computer-Assisted Testing System . </li></ul><ul><li>(Gwo-Jen Hwang et al.,2004) </li></ul><ul><li>2.On evaluate the students’ learning behavior. —get better classification </li></ul><ul><li>( Minaei-Bidgoli & Punch, 2003 ; Traynor & Gibson,2005) </li></ul>
    26. 26. Take Computer-Assisted Testing System as Example <ul><li>Population ( 族體 ): </li></ul><ul><li>Encoding ( 編碼 ): </li></ul><ul><li>Crossover ( 交配 ): </li></ul><ul><li>Mutation ( 突變 ): </li></ul><ul><li>Selection ( 適者生存 ): </li></ul><ul><li>Fitness Function ( 適合度公式 ): </li></ul>Source:Gwo-Jen Hwang et al.,2004
    27. 27. 固定題數的試題配置問題 (Fixed Number of Test Items) <ul><li>FNTI 目標函式: </li></ul><ul><li>   Maximize Z = </li></ul><ul><li>FNTI 限制式: </li></ul><ul><li>   </li></ul><ul><li>x i ≥ 1 Xi 代表題庫中的題號,最小題號為 1 </li></ul><ul><li> x i ≤ n 最大題號為 n </li></ul><ul><li>1 ≤ i ≤ q_num – 1 共選出 q_num 題 </li></ul>指定鑑別度最大化 指定概念的最小出題比重 12 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 18 9 45 82 6 2 34 65 71
    28. 28. FNTI 的試題配置基因演算法 (1/3) <ul><li>試題數目先決基因演算法 (Feasible Item First Genetic approach – FIFG) </li></ul><ul><li>FIFG 的進行步驟 </li></ul><ul><li>建立母體 </li></ul><ul><ul><li>X 為染色體,包含有 q_num 個基因 </li></ul></ul><ul><ul><li>X = [ x 1 , x 2 , …, x q_num ] </li></ul></ul><ul><ul><li>  X = [25, 118, …., 803] </li></ul></ul><ul><ul><li>基因值代表著一題試題的編號 </li></ul></ul><ul><ul><li>x i ≠ x j ,且 i ≠ j 和 1 ≤ i, j ≤ q_num </li></ul></ul>
    29. 29. FNTI 的試題配置基因演算法 (2/3) <ul><li>交配 (Crossover) </li></ul><ul><li>   A[12,15, 96,112,193,243]    A’[12,15,96 ,185,256,356 ] </li></ul><ul><li>   B[3,56,108,185,256,356]    B’[3,56,108 ,112,193,243 ] </li></ul><ul><ul><li>有兩相同基因值時,隨機更換其中一值,直到沒有相同基因值為止 </li></ul></ul><ul><ul><li>試卷中不可有二題相同的試題 </li></ul></ul>Cut point
    30. 30. FNTI 的試題配置基因演算法 (3/3) <ul><li>突變 (Mutation) </li></ul><ul><li>  A[ 3,8,56,66, 256 ,515 ]    A’[ 3,8,56,66, 346 ,515 ] </li></ul><ul><li>  P = ( 1 / n ) </li></ul>Procedure: mutation Begin for (m = 1, m ≤ q_num  k , m++){ Generate random number r m from discrete interval [0, 1] Generate random number RC from discrete interval [1, n] mutation function(P, r m , RC ) } End 重覆 2~5 步驟,直到連續 10 代解無進步或已產生了 1500 代
    31. 31. Application of Decision Tree—Adaptive Assessment Source: 曾憲雄, 2005
    32. 32. Application of Decision Tree—Adaptive Tutoring Source:Ueno, 2005
    33. 33. Application of Decision Tree—Adaptive Tutoring Source:ibid
    34. 34. Application of Decision Tree—Adaptive Tutoring Source:ibid
    35. 35. Deconstruct Geographical Knowledge---Concept Mapping Source: Flickr
    36. 36. Geomorphological Concept map Source: Ron Hoz et al., 1997
    37. 37. Apply Concept mapping on Diagnosis and Adaptive Tutoring Addition of integers Positive integers Multiplication of integers Division of integers Subtraction of integers Negative integers Zero Prime numbers
    38. 38. Conceptual effect table (CET) e.g. C 3  C 4
    39. 39. Test item relationship table (TIRT) O: Not relevant 1: Very strongly relevant
    40. 40. Student answer sheet table (AST) O: The student has correctly answered the test item 1: The student failed to correctly answer the test item
    41. 41. Pathway of Remedial Instruction C 1 C 3 C 6 C 1 C 3 C 7 C 1 C 4 C 8 C 10 C 2 C 4 C 8 C 10 0.16 0.6 0.66 0.16 0.6 1 0.16 0.16 0 0 0 0.16 0 0 C 2 C 5 C 9 0 0.28 0 假設 θ 值為 0.3 ,代表我們對於某個概念之錯誤比率的最大容忍程度為 30  ,依上述原則,可得到補救學習路徑: PATH1 : C 3  C 6 PATH2 : C 3  C 7
    42. 42. Pathway of Remedial Instruction Addition of integers Positive integers Multiplication of integers Division of integers Subtraction of integers Negative integers Zero Prime numbers
    43. 43. Approach of using Concept mapping <ul><li>Use students’ test data to create students’ concept maps. </li></ul><ul><li>By the same way, create experts’ concept maps. </li></ul><ul><li>Whether the closeness between the two kinds of maps would decrease by adaptive remedial instruction? </li></ul>
    44. 44. Research Opportunities <ul><li>Apply AES on a selected Geographical unit on high school level---concept mapping </li></ul><ul><li>Apply Data Mining Techniques on Geographical AES--- Adaptive Assessment, Tutoring, Remedial Instruction. </li></ul><ul><li>Evaluate the application of Geographical AES. </li></ul><ul><li>Whether the AES could stimulate higher-order thinking skills--- Qualitative Research. </li></ul>
    45. 45. <ul><li>Choose or create an suitable platform </li></ul><ul><li>Design the educational process </li></ul><ul><li>Author educational stuff </li></ul><ul><li>Recruit participants </li></ul><ul><li>Adaptive Assessment, Tutoring, Remedial Instruction? </li></ul><ul><li>Analyze Collected data. </li></ul>Supposed Workflow
    46. 46. The End

    ×