• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
La prochaine génération photovoltaïque sera-t-elle organique ? par Jean Manca | Liege Creative, 25.04.13
 

La prochaine génération photovoltaïque sera-t-elle organique ? par Jean Manca | Liege Creative, 25.04.13

on

  • 621 views

Les nanomatériaux semi-conducteurs organiques offrent des solutions intelligentes et durables dans une large gamme d'applications dites "propres" : de la production d'énergie renouvelable à ...

Les nanomatériaux semi-conducteurs organiques offrent des solutions intelligentes et durables dans une large gamme d'applications dites "propres" : de la production d'énergie renouvelable à l'électronique. Le potentiel de marché pour les applications "nano-tech" organiques est donc énorme.
Partant du constat que la majeure partie des nouvelles connaissances dans ce domaine se trouve aujourd’hui au sein des universités et des centres de recherches, le projet Organext a vu le jour afin de fournir une plateforme aux entreprises leur permettant d'utiliser les compétences développées par les partenaires du projet et de les diriger vers des applications et des produits innovants.

Statistics

Views

Total Views
621
Views on SlideShare
565
Embed Views
56

Actions

Likes
0
Downloads
5
Comments
0

1 Embed 56

http://www.liegecreative.be 56

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    La prochaine génération photovoltaïque sera-t-elle organique ? par Jean Manca | Liege Creative, 25.04.13 La prochaine génération photovoltaïque sera-t-elle organique ? par Jean Manca | Liege Creative, 25.04.13 Presentation Transcript

    • Parole d’expertJean MANCA, UHasselt, Organext project coordinatorWill the next photovoltaic generation beOrganic ?
    • Avec le soutien de :
    • WILL THE NEXT PHOTOVOLTAIC GENERATION BEWILL THE NEXT PHOTOVOLTAIC GENERATION BEORGANIC ?ORGANIC ?Prof dr Jean Manca - Universiteit HasseltProf.dr. Jean Manca Universiteit Hasseltjean.manca@uhasselt.beChâteau de Colonster, Liège 25/04/2013Château de Colonster, Liège 25/04/2013
    • TheThe TeraTera--WattWatt (TW=10(TW=101212 W)W) challengechallengeGlobal power consumption : 15 TW (2050 : 30 TW)
    • The sun is a solutionThe sun is a solutionwww.3E.be
    • Photovoltaic energy (PV)Photovoltaic energy (PV)– Peak power sunlight : 1000 W/m2– Si : Eg = 1.1 eV ; 99% PV market– Efficiency commercial Si-solar cell : 10-15%
    • PV is a solutionPV is a solutionCalifornia:1m²=1 barrel/year1.5% of Europe = globalelektricity demand1m 1 barrel/yearBelgium : 2m²elektricity demand(η=12%)
    • PV is a solutionPV is a solutionSolar energy : highest energy yield per hectare
    • PV is a solutionPV is a solutionSolar energy : highest energy yield per hectareBut…Highest cost!=>for TW-challenge lowergcost PV
    • PVPV--costs: learning curvecosts: learning curvecost of PV reduces with 20% with a doubling of worldwide accumulated production ;2 driving forces :‘S l l i ’– ‘Scale learning’– ‘Technology learning’ : novel (nano)technologies lead totaccelerated learning curvecost of PV equal ith energ generation based on fossile fuels at a produced olume >cost of PV equal with energy generation based on fossile fuels at a produced volume >100 GW10010Wp[$/W]1Cost/W0.110 100 1000 10000 100000Accumulated production [MW]Accumulated production [MW]
    • PV GENERATIONSPV GENERATIONSTHINNER, BETTER, CHEAPER & Different, ,1st generation PV :1 generation PV :Si wafer-based technology2nd generation PV :Thin-film Si on different substrate3rd generation PV :Thin-film energy-conversionNano-materials based :O i l ll-Organic solar cells-Grätzel solar cells-Hybrid solar cells-…
    • OrganicOrganic ElectronicsElectronicsSemiconductive inks paint solutionCarbon-basedSemiconductive inks, paint, solutionSOLUBLE!Solution processable Printable
    • OrganicOrganic ElectronicsElectronics• Emerging key technology for the 21st century• Variety of applications: LEDs, transistors, electrochromic windows,(bio)sensors, solar cells,..• Novel generation of electronics: printable, flexible, smart textiles,..• Broad economic perspectives (also for SME’s)• Solar cells: renewable energy and intelligent ambient
    • OrganicOrganic solarsolar cellscellsThickness : 100 nm=> 1000X thinner than Si
    • OrganicOrganic solarsolar cellscellsThickness : 100 nm=> 1000X thinner than Si
    • OrganicOrganic solarsolar cellscellsThickness : 100 nm=> 1000X thinner than Si
    • OrganicOrganic solarsolar cellscellsDonor materiale.g. P3HTAcceptor materialsLUMOe.g. PCBMBulk heterojunction (BHJ) LUMOBulk heterojunction (BHJ)CathodeHOMOHOMOMetal-I Metal-IIPolymer AcceptoracceptorpolymerAnode
    • OrganicOrganic solarsolar cellscellsLight absorption (1)Light absorption (1)E it f ti (2)Light absorption (1)Exciton formation (2)Exciton diffusion (3)LUMOExciton formation (2)Exciton diffusion (3)hhννLUMO+HOMOHOMOMetal-I Metal-IIPolymer AcceptorExciton diffusion length ≈10 nm
    • OrganicOrganic solarsolar cellscellsLight absorption (1)Light absorption (1)Exciton formation (2)Exciton diffusion (3) Chargeti ( f ) (4)Charge separation (4)LUMOseparation (∼ fs) (4)+LUMOHOMOHOMOMetal-I Metal-IIPolymer Acceptor
    • OrganicOrganic solarsolar cellscellsLight absorption (1)Light absorption (1)Exciton formation (2)Exciton diffusion (3)Charge transport (5)Charge separation (4)Charge transport (5) LUMOCharge transport (5)Charge collection (6)Charge collection (6) LUMO+ HOMOHOMOMetal-I Metal-IIPolymer Acceptor
    • OrganicOrganic solarsolar cellscellsLight absorption (1)Light absorption (1)Exciton formation (2)Exciton diffusion (3)Charge transport (5)Charge separation (4)Charge transport (5) LUMOCharge transport (5)Charge collection (6)Charge collection (6) LUMO+ HOMOHOMOMetal-I Metal-IIPolymer AcceptorPercolation paths
    • OrganicOrganic solarsolar cellscellsLight absorption (1)Light absorption (1)Exciton formation (2)Exciton diffusion (3)Charge separation (4)Charge transport (5)Charge collection (6)‘Ideal’ morphology:- Donor and acceptorphase separated at scale+phase separated at scale< exciton diffusion length- ‘Highways’ for chargest d l t dtowards electrodesPercolation paths
    • OrganicOrganic solarsolar cellscells• Flexible, semi-transparent, lightDesign freedom• Design freedom• Architecture, textile, mobile apps, …Konarka, Minolta, …
    • OrganicOrganic solarsolar cellscells• Carbon based :‘artificial photosynthesis’
    • GrätzelGrätzel--solarsolar cellcellArtificial photosynthesisNanocrystalline TiO2Film : 10-20 μmDeeltjes : 10-30 nm
    • GrätzelGrätzel--solarsolar cellcell
    • Hybrid solar cellHybridHybrid organicorganic::inorganicinorganic BHJBHJHybridHybrid organicorganic::inorganicinorganic BHJBHJMetal oxide (Metal oxide (ZnOZnO)) nanonano--columnscolumnsP3HTP3HT+ZnOZnO+= 0 75%η= 0,75%L. Baeten, B. Conings et al., Adv.Mater, Volume: 23 Issue: 25 Pages: 2802 (2011)
    • NanoNano--PVPV :: advantagesadvantages && futurefuture‘Solar Paint’‘Solar Paint’Solar PaintSolar Paint
    • NanoNano--PVPV :: advantagesadvantages && futurefuture‘Solar Paint’‘Solar Paint’Solar PaintSolar Paint“Printable PV”• Screen printing• Spraycoating• Inkjet printing• ……
    • NanoNano--PVPV :: advantagesadvantages && futurefutureLow costLow cost –– large arealarge areaLow costLow cost large arealarge area•Low cost & large area (outdoor)•Easy preparation low T evaporation & printing
    • NanoNano--PVPV :: advantagesadvantages && futurefutureLow costLow cost –– large arealarge areaLow costLow cost large arealarge area•Large area printing (screenprinting)EL-displays spin-off LUMOZAwww.lumoza.be
    • NanoNano--PVPV :: advantagesadvantages && futurefutureIndoor & mobile applicationsIndoor & mobile applicationsIndoor & mobile applicationsIndoor & mobile applications•Low weight : e.g. mobile applicationsplastic substrates< 1 micron total thickness of device< 1 micron total thickness of device•Broad application domainWorks also under low leight intensity (e.g. indoor)Less dependent on incidence angleLess dependent on incidence angle
    • NanoNano--PVPV :: advantagesadvantages && futurefutureIndoor & mobile applicationsIndoor & mobile applications•New esthetical possibilities & design-freedomIndoor & mobile applicationsIndoor & mobile applicationsDesign-freedom : colour & formSemi-transparent : integration in glassp g g
    • NanoNano--PVPV :: advantagesadvantages && futurefutureIndoor & mobile applicationsIndoor & mobile applications•New esthetical possibilities & design-freedomIndoor & mobile applicationsIndoor & mobile applicationsDesign-freedom : colour & formSemi-transparent : integration in glassp g gIMEC
    • NanoNano--PVPV :: advantagesadvantages && futurefutureIndoor & mobile applicationsIndoor & mobile applicationsIndoor & mobile applicationsIndoor & mobile applications•New esthetical possibilities & design-freedomFlexible : integration in textile
    • NanoNano--PVPV :: advantagesadvantages && futurefutureIndoor & mobile applicationsIndoor & mobile applicationsIndoor & mobile applicationsIndoor & mobile applications•New esthetical possibilities & design-freedomFlexible : variety of substrates (plastic, glass, textile, paper, metal,..)
    • Nano-PV : The road ahead…PV-challenges :Increase of efficiencyRobust production processIncrease of lifetimeIncrease of lifetimeNeubers/KonarkaNREL
    • Nano-PV : The road ahead…PV-challenges :Increase of efficiencyRobust production processIncrease of lifetimeIncrease of lifetimeNeubers/Konarka
    • Nano-PV : The road ahead…PV-challenges :Increase of efficiencyRobust production processIncrease of lifetimeIncrease of lifetime“Space is energy”p gy
    • Nano-PV : The road ahead…PV-challenges :Increase of efficiencyRobust production processIncrease of lifetimeIncrease of lifetime“Space is energy”p gy“Solar Highway”
    • Nano-PV : The road ahead…PV-challenges :Increase of efficiencyRobust production processIncrease of lifetimeIncrease of lifetime“Space is energy”p gyEstethical BIPV : “Solar buildings”/ “Solar Cities”
    • ‘Future’ of OPV‘Future’ of OPVInterdisciplinary domain  (joining forces)Interdisciplinary domain  (joining forces)
    • Project : ORGANEXTProject : ORGANEXT• Euregio Maas-Rhein Cluster of R&D centres andgindustrial partners• Nano-materials and innovative depositionNano materials and innovative depositiontechniquesNext generation organic opto electronic• Next-generation organic opto-electronicapplications and thin film solar cells (organicelectronics)• Focus on knowledge exchange, technology andmarkets
    • Project Partners
    • Project ORGANEXT (EMR. INT4-1.2.-2009-04/054)Selected in the frame of theOperational Program INTERREG IV-A Euregio Meuse-RhineOperational Program INTERREG IV-A Euregio Meuse-RhineProject ORGANEXT : www.organext.orgj g gNanomaterials & innovative deposition techniques for novel generation opto-electronic applications and thin-film solar cells.
    • J i t d i t lli tJoin us towards an intelligentand sustainable futurewww organext bewww.organext.be