• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Rolf pfeifer conferencia magistral
 

Rolf pfeifer conferencia magistral

on

  • 1,198 views

 

Statistics

Views

Total Views
1,198
Views on SlideShare
1,123
Embed Views
75

Actions

Likes
0
Downloads
13
Comments
0

6 Embeds 75

http://www.lideresacademicos.net 58
http://lideresacademicos.campusqueretaro.net 7
http://lideresacademicos.net 3
http://www.lideresacademicos.campusqueretaro.net 3
http://lideres.campusqueretaro.net 3
http://lideres.queretaro.itesm.mx 1

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Rolf pfeifer conferencia magistral Rolf pfeifer conferencia magistral Presentation Transcript

    • “Soft Robotics” Self-organization, embodiment, and biological inspiration The four messages of embodiment Tecnológico de Monterrey Campus Querétaro 22 February 2011 Rolf Pfeifer, Artificial Intelligence Laboratory Department of informatics, University of Zurich, SwitzerlandFreitag, 4. März 2011
    • Thanks to ... Hajime Asama Masayuki Inaba Rudolf Bannasch Akio Ishiguro Josh Bongard Oussama Kathib Simon Bovet Alois Knoll Rodney Brooks Yasuo Kuniyoshi Weidong Chen Lukas Lichtensteiger Steve Collins Max Lungarella Holk Cruse Ren Luo Paolo Dario Shuhei Miyashita Raja Dravid Norman Packard Rodney Douglas Mike Rinderknecht Peter Eggenberger Roy Ritzmann Martin Fischer Andy Ruina Dario Floreano Giulio Sandini Toshio Fukuda Olaf Sporns Robert Full Luc Steels Gabriel Gomez Russ Tedrake Fumio Hara Esthen Thelen Alejandro Hernandez Sethu Vijakyakumar Owen Holland Ruediger Wehner Koh Hosoda Martijn Wisse Fumiya Iida Hiroshi Yokoi Auke Ijspeert Wenwei Yu Takashi Ikegami Marc ZieglerFreitag, 4. März 2011
    • … for their ideas Hajime Asama Masayuki Inaba Rudolf Bannasch Akio Ishiguro Josh Bongard Oussama Kathib Simon Bovet Alois Knoll Rodney Brooks Yasuo Kuniyoshi Weidong Chen Lukas Lichtensteiger Steve Collins Max Lungarella Holk Cruse Ren Luo Paolo Dario Shuhei Miyashita Raja Dravid Norman Packard Rodney Douglas Mike Rinderknecht Peter Eggenberger Roy Ritzmann Martin Fischer Andy Ruina Dario Floreano Giulio Sandini Toshio Fukuda Olaf Sporns Robert Full Luc Steels Gabriel Gomez Russ Tedrake Fumio Hara Esthen Thelen Alejandro Hernandez Sethu Vijakyakumar Owen Holland Ruediger Wehner Koh Hosoda Martijn Wisse Fumiya Iida Hiroshi Yokoi Auke Ijspeert Wenwei Yu Takashi Ikegami Marc ZieglerFreitag, 4. März 2011
    • Goals buzzword “embodiment” seeing things differently 4Freitag, 4. März 2011
    • Contents • Basic ideas: the four messages of embodiment • Applications: Service- and companion- robots • Where are we going? — “Soft robotics” • A look into the future: Self-assembly • Take home message 5Freitag, 4. März 2011
    • Getting into the spirit of embodiment 6Freitag, 4. März 2011
    • The spirit of embodiment 7Freitag, 4. März 2011
    • The spirit of embodiment 7Freitag, 4. März 2011
    • The spirit of embodiment 7Freitag, 4. März 2011
    • The spirit of embodiment 7Freitag, 4. März 2011
    • The spirit of embodiment 7Freitag, 4. März 2011
    • “Crazy Bird” — Morphology, Control loosely hanging feet rubber/plastic Design and construction: Mike Rinderknecht 8Freitag, 4. März 2011
    • Message 1: Physical embedding Studying brain (or control) not sufficient: Understanding of • embedding of brain into organism • organism’s morphological and material properties • interaction with environment required 9Freitag, 4. März 2011
    • Let me be clear The brain is important! 10Freitag, 4. März 2011
    • Let me be clear The brain is important! but not the whole story ... 11Freitag, 4. März 2011
    • A bit of background 12Freitag, 4. März 2011
    • Artificial Intelligence — goals 1. Understanding biological systems 2. Making humans abstractions, animals developing theory beer-serving robot 3. Applications 13 vacuum cleanerFreitag, 4. März 2011
    • Zurich AI Lab robots Ms. Gloria Rufus T. Teasdale Firefly Didabot Famez Sita MorphoFreitag, 4. März 2011
    • Zurich AI Lab robots Amouse SahabotI/II Melissa Tripp Samurai Analogrob Dexterolator Stumpy Eyebot Mindstorms Kheperas Mitsubishi ForklegFreitag, 4. März 2011
    • Zurich AI Lab robots Stumpy, Monkey, Puppy, Min-dog, Wheeled Walker, Mini-Stumpy, Wanda, Dumbo, RabbitFreitag, 4. März 2011
    • Zurich AI Lab robots 17Freitag, 4. März 2011
    • AI Lab Robots (exploration of morphology) 18Freitag, 4. März 2011
    • Two views of intelligence classical: cognition as computation embodiment: cognition emergent from sensory- motor and interaction processes 19 Illustrations by Shun IwasawaFreitag, 4. März 2011
    • Successes and failures of the classical approach successes failures applications (e.g. foundations of Google) behavior chess natural forms of intelligence consumer electronics interaction with real world etc. 20Freitag, 4. März 2011
    • Message 2: Real/Artificial worlds Understanding of differences between industrial robots and humans/animals and their environments 21Freitag, 4. März 2011
    • Industrial environments vs. real world industrial real world environments environment environment limited knowledge well-known and predictability little uncertainty rapidly changing predictability high-level of uncertainty 22Freitag, 4. März 2011
    • Industrial robots vs. natural systems principles: - strong, precise, fast motors - centralized control - optimization - computing power Industrial robots 23Freitag, 4. März 2011
    • Industrial robots vs. natural systems principles: - low precision - compliant humans - control distributed throughout body - reactive - coping with uncertainty no direct transfer of methods 24Freitag, 4. März 2011
    • Transferring methods Sony Qrio: high stiffness centralized control conputationally intensive 25Freitag, 4. März 2011
    • Transferring methods Sony Qrio: high stiffness centralized control conputationally intensive 25Freitag, 4. März 2011
    • Transferring methods Sony Qrio: high stiffness centralized control conputationally intensive 25Freitag, 4. März 2011
    • Transferring methods Sony Qrio: high stiffness centralized control conputationally intensive 25Freitag, 4. März 2011
    • By comparison: The “Passive Dynamic Walker” Design and construction: Ruina, Wisse, Collins: Cornell University Ithaca, New York The “brainless” robot”: walking without control 26Freitag, 4. März 2011
    • By comparison: The “Passive Dynamic Walker” Design and construction: Ruina, Wisse, Collins: Cornell University Ithaca, New York The “brainless” robot”: walking without control 26Freitag, 4. März 2011
    • By comparison: The “Passive Dynamic Walker” self-stabilization Design and construction: Ruina, Wisse, Collins: Cornell University Ithaca, New York The “brainless” robot”: walking without control 27Freitag, 4. März 2011
    • By comparison: The “Passive Dynamic Walker” self-stabilization Design and construction: Ruina, Wisse, Collins: Cornell University Ithaca, New York The “brainless” robot”: walking without control 27Freitag, 4. März 2011
    • Implications of embodiment Self-stabilization Passive Dynamic Walker Pfeifer et al.,Science, 16 Nov. 2007 28Freitag, 4. März 2011
    • Implications of embodiment Self-stabilization Passive Dynamic Walker Pfeifer et al.,Science, 16 Nov. 2007 29Freitag, 4. März 2011
    • Implications of embodiment Self-stabilization Passive Dynamic Walker self-stabilization Pfeifer et al.,Science, 16 Nov. 2007 30Freitag, 4. März 2011
    • Short question memory for walking? 31Freitag, 4. März 2011
    • Contrast: Full control — “hard” Honda Asimo Sony Qrio 32Freitag, 4. März 2011
    • Extending the ecological nicheDesign and construction:Martijn Wisse, Delft University self-stabilization 33Freitag, 4. März 2011
    • Extending the ecological nicheDesign and construction:Martijn Wisse, Delft University self-stabilization 33Freitag, 4. März 2011
    • Implications of embodiment Self-stabilization “Denise” self-stabilization Pfeifer et al.,Science, 16 Nov. 2007 34Freitag, 4. März 2011
    • Message 3: Task distribution Task distribution between brain (control), body (morphology, materials), and environment morphological computation 35Freitag, 4. März 2011
    • Message 3: Task distribution Task distribution between brain (control), body (morphology, materials), and environment no clear separation between control and hardware (“soft robotics”) morphological computation 36Freitag, 4. März 2011
    • “Stumpy”: task distribution almost brainless: 2 actuated joints springy materials surface properties of feet Design and construction: Raja Dravid, Chandana Paul, Fumiya Iida self-stabilization 37Freitag, 4. März 2011
    • The dancing robot “Stumpy” Collaboration with Louis-Philippe Demers, Nanyang Technological University, Singapore Movie: Dynamic Devices and AILab, Zurich 38Freitag, 4. März 2011
    • The dancing robot “Stumpy” Collaboration with Louis-Philippe Demers, Nanyang Technological University, Singapore Movie: Dynamic Devices and AILab, Zurich 38Freitag, 4. März 2011
    • Outsourcing functionality Mini-rHex Design and construction: Robin Guldener, Lijin Aryananda soft, flexible, elastic materials 39Freitag, 4. März 2011
    • Outsourcing functionality Mini-rHex Design and construction: Robin Guldener, Lijin Aryananda soft, flexible, elastic materials 39Freitag, 4. März 2011
    • The “robot frog” driven by pneumatic actuators (UTokyo) Design and construction: Ryuma Niiyama and Yasuo Kuniyoshi University of Tokyo 40Freitag, 4. März 2011
    • The “robot frog” driven by pneumatic actuators (UTokyo) Design and construction: Ryuma Niiyama and Yasuo Kuniyoshi University of Tokyo 40Freitag, 4. März 2011
    • Grasping • many ways • winding spring • release • exploited by brain “outsourcing” of functionality distribution of control through body “free” 41Freitag, 4. März 2011
    • Towards “cognitive” robots 42Freitag, 4. März 2011
    • Adding sensors: generation of sensory stimulation through action • knowledge about environment: pressure, haptic, acceleration, vision, ... • knowledge about own body: angle, torque, force, vestibular, … 43Freitag, 4. März 2011
    • Message 4: Physical dynamics and information structure Induction of patterns of sensory stimulation through physical interaction with environment raw material for information processing of brain (control) induction of correlations (information structure) 44Freitag, 4. März 2011
    • Loosely swinging arm • preferred trajectories • biomechanical constraints (morphology, materials) elbow joint: passive, self-organizes into proper trajectory 45Freitag, 4. März 2011
    • Loosely swinging arm • preferred trajectories • biomechanical constraints (morphology, materials) purpose? elbow joint: passive, self-organizes into proper trajectory 46Freitag, 4. März 2011
    • Fitting it all together: the“story” • exploration • biomechanical constraints (morphology, materials) • preferred trajectories • generation of rich useful data • induction of information structure (self-structuring) • learning • cross-modal associations (predictions) 47Freitag, 4. März 2011
    • Compliance, “softness”: the next steps 48Freitag, 4. März 2011
    • The super-compliant robot ECCE Design and construction: Rob Knight — robotstudio, Geneva Richard Newcombe — Imperial College Owen Holland — Essex/Sussex University Hugo Marques, Cristiano Alessandro, Max Lungarella — UZH, experiments ECCE — Embodied Cognition in a Compliantly Engineered Robot Anthropomorphic 49 designFreitag, 4. März 2011
    • The super-compliant robot ECCE ECCE — Embodied Cognition in a Compliantly Engineered Robot 50Freitag, 4. März 2011
    • Techfest 2011, IIT Bombay Embodied Intelligence Switzerland 51Freitag, 4. März 2011
    • i-Days, Lucerne Switzerland September 2010 52Freitag, 4. März 2011
    • Hannover Fair, ICT Brussels, Science Fair St. Agrève, France 53Freitag, 4. März 2011
    • ECCE with Doris Leuthart, president of Switzerland: Innovation Fair 2010 Design and construction: der “bionische Roboter” Rob Knight — robotstudio, Geneva Richard Newcombe — Imperial College Owen Holland — Essex/Sussex University Jaan Spitz, Pascal Kaufmann — UZH Hugo Marques, Cristiano Alessandro, Max Lungarella — UZH, experiments ECCE — Embodied Cognition in a Compliantly Engineered Robot Anthropomorphic 54 designFreitag, 4. März 2011
    • The super-compliant robot ECCE Anthropomorphic design 55Freitag, 4. März 2011
    • The super-compliant robot ECCE Anthropomorphic design 55Freitag, 4. März 2011
    • The super-compliant robot ECCE Anthropomorphic design 56Freitag, 4. März 2011
    • The super-compliant robot ECCE Anthropomorphic design 56Freitag, 4. März 2011
    • Essence • self-structuring of sensory data through — physical — interaction with world • physical process, not computational pre-requisite for learning Inspiration: John Dewey, 1896 (!) Merleau-Ponty, 1963 Bajcsy, 1963; Aloimonos, 1990; Ballard, 1991 Sporns, Edelman, and co-workers Thelen and Smith (developmental studies) 57Freitag, 4. März 2011
    • Contents • Basic ideas: the four messages of embodiment • Applications: Service- and companion- robots • Where are we going? — “Soft robotics” • A look into the future: self-assembly • Take home message 58Freitag, 4. März 2011
    • Applications • classical/algorithmic: chess, search engines, data mining, appliances, control, etc. • embodied/robots in real world: entertainment, education (edutainment), service, medical, hazardous environments, etc. 59Freitag, 4. März 2011
    • Entertainment robots 60Freitag, 4. März 2011
    • The flute playing robot Roboter WF-4 Design and construction: Waseda University, Tokyo 61Freitag, 4. März 2011
    • The flute playing robot Roboter WF-4 Design and construction: Waseda University, Tokyo 61Freitag, 4. März 2011
    • Recptionist at last World Expo Design and construction: Osaka University, and Kokoro Dreams 62Freitag, 4. März 2011
    • Recptionist at last World Expo Design and construction: Osaka University, and Kokoro Dreams 62Freitag, 4. März 2011
    • The robot teacher Saya (Hiroshi Kobayashi, Univ. of Science, Tokyo) 63Freitag, 4. März 2011
    • Support Suits Exoskeletons paralyzed individual to climb Breithorn (Switzerland) HAL, the “Hybrid Exoskeleton Assistive Limb ®” 64 Cyberdyne Inc.Freitag, 4. März 2011
    • Wheel chair: controlled by brain waives recognition of subject’s intentions based on analysis of non-invasive EEG signals Design and construction: Jose del Millan, EPFL, Switzerland 65Freitag, 4. März 2011
    • First prototype Design and construction: Konstantinos Dermitzakis AILab, UZH 66Freitag, 4. März 2011
    • First prototype Design and construction: Konstantinos Dermitzakis AILab, UZH 66Freitag, 4. März 2011
    • Fitness center of the ten, nine, eight, … future? Robot development by Osaka University and Kokoro Dreams Japan 67Freitag, 4. März 2011
    • Entertainment and sports ALP: The Adaptive Leg Press Design and construction: Max Lungarella and Raja Dravid 68Freitag, 4. März 2011
    • Entertainment and sports ALP: The Adaptive Leg Press Design and construction: Max Lungarella and Raja Dravid 69Freitag, 4. März 2011
    • Entertainment and sports ALP: The Adaptive Leg Press Design and construction: Max Lungarella and Raja Dravid 69Freitag, 4. März 2011
    • Contents • Basic ideas: the four messages of embodiment • Applications: Service- and companion- robots • Where are we going? — “Soft robotics” • A look into the future: self-assembly • Take home message 70Freitag, 4. März 2011
    • “Soft Robotics”Soft to touch Soft movement Soft interaction Emotions 71Freitag, 4. März 2011
    • “Soft Robotics”Soft to touch Soft movement Soft interaction Emotions- materials - elastic - soft movements - friendly- soft skin compliant - social and interaction- fur materials for cognitive skills with humans- deformable muscles and - reactive - facial tissue tendons - soft materials expression - variable compl. - body actuators posture - expl. passive dynamics 72Freitag, 4. März 2011
    • The next “industrial revolution” beyond traditional manufacturing new manufacturing hard robotics softbots technology new industrial revolution 73Freitag, 4. März 2011
    • The next “industrial revolution” beyond traditional manufacturing manipulation skills new manufacturing hard robotics softbots technology new industrial revolution 74 Rodney BrooksFreitag, 4. März 2011
    • New manipulation skills 75Freitag, 4. März 2011
    • Contents • Basic ideas: the four messages of embodiment • Applications: Service- and companion- robots • Where are we going? — “Soft robotics” • A look into the future: self-assembly • Take home message 76Freitag, 4. März 2011
    • Self-assembly Shuhei Miyashita’s “Tribolons” • light, swimming on water (electrolyte) • magnet and vibration motor • “pantograph” 77Freitag, 4. März 2011
    • “Pizza” self- assembly 78Freitag, 4. März 2011
    • “Pizza” self- assembly Design and construction: Shuhei Miyashita, AI Lab, UZH and CMU 79Freitag, 4. März 2011
    • “Pizza” self- assembly Design and construction: Shuhei Miyashita, AI Lab, UZH and CMU 79Freitag, 4. März 2011
    • “Pizza” self- assembly Design and construction: Shuhei Miyashita, AI Lab, UZH and CMU 80Freitag, 4. März 2011
    • Emergent functionality a “bicycle” green discs: magnet no vibration motor emergent functionality yellow triangle: magnet how does it work? vibration motor basin with electrolyte Design and construction: 81 Shuhei Miyashita, AI Lab, UZH and CMUFreitag, 4. März 2011
    • Emergent functionality a “bicycle” Design and construction: Shuhei Miyashita, AI Lab, UZH and CMU 82Freitag, 4. März 2011
    • Emergent functionality a “bicycle” Design and construction: Shuhei Miyashita, AI Lab, UZH and CMU 82Freitag, 4. März 2011
    • Contents • Basic ideas: the four messages of embodiment • Applications: Service- and companion- robots • Where are we going? — “Soft robotics” • A look into the future: self-assembly • Take home message 83Freitag, 4. März 2011
    • Summary and conclusions Key to “soft robotics”: understanding of “embodiment” —> the “four messages” 84Freitag, 4. März 2011
    • Summary: The four messages of embodiment Message 1: Physical embedding Understanding brain not enough; morphology materials; embedding Message 2: Real/Artificial worlds Fundamental differences industrial and real-world environments Message 3: Task distribution Cooperation - brain, body, environment Message 4: Physical dynamics and information structure Induction of information structure; dependence on morphology and control 85Freitag, 4. März 2011
    • Like to know more? 86Freitag, 4. März 2011
    • Visit us in Zurich 87Freitag, 4. März 2011
    • or read THE book 88Freitag, 4. März 2011
    • or read THE book what book?!?? 89Freitag, 4. März 2011
    • ReadRolf Pfeifer and Josh BongardHow the body shapes the way wethink — a new view of intelligence(popular science)MIT Press, 2007Illustrations by Shun Iwasawa 90Freitag, 4. März 2011
    • Chinese translation Translated by Weidong Chen Shanghai Jiao Tong University and Wenwei Yu Chiba University, Japan Foreword by Lin Chen Chinese Academy of Science 91Freitag, 4. März 2011
    • How How the body the body shapes shapes translated by the way the way Koh Hosoda, Osaka University and we think : Ishiguro, Tohoku University : Akio we think a new view of a new view of to appear soon intelligence 92 intelligenceFreitag, 4. März 2011
    • 93Freitag, 4. März 2011
    • or join The ShanghAI Lectures 93Freitag, 4. März 2011
    • or join The ShanghAI Lectures • global lecture series on natural and artificial intelligence • video conference with 20 universities • 3D virtual collaborative environments for classwork with 40 universities • intercultural cooperation on interdisciplinary topic The ShanghAI Lectures, Sept to Dec 2011 (from the University of Zurich) 93Freitag, 4. März 2011
    • Participating Universities 2010 Time Zones 9am • UZH • ETHZ • EPFL 4pm • HSG • Shanghai 4am • Salford • HSLU • Beijing • Xi’an 1am • NY Citytech • Vermont • Manchester • Essex • TU Munich • LMU • Hosei • Osaka • Hamburg Stanford 5pm • • Michigan • Edinburgh • Chiba • USC • Tallinn • UC Irvine 8am • Algiers 11am Herzlia • • Nagoya • Tohoku • Jeddah • SKKU • UAE (Korea) • NTU (Singa) • Sao Paolo • UTAS 7pm 94Freitag, 4. März 2011
    • Participating Universities 2011 Time Zones 9am • UZH • ETHZ • EPFL 4pm • HSG • Shanghai 4am • Salford • HSLU • Beijing • Xi’an 1am • NY Citytech • Vermont • Manchester • Essex • TU Munich • LMU • Hosei • Osaka • Hamburg Stanford 5pm • • Michigan • Edinburgh • Chiba • USC • Tallinn • UC Irvine 8am 11am Herzlia • • Nagoya • Tohoku 3am • Algiers • Jeddah • UAE • SKKU • Queretaro (Korea) • NTU ? • Sao Paolo (Singa) • UTAS 7pm 95Freitag, 4. März 2011
    • Freitag, 4. März 2011
    • The Zurich AI Lab 97Freitag, 4. März 2011
    • Thank you for your attention! 98Freitag, 4. März 2011
    • The Zurich AI Lab 1987 Foundation with 2 PhD students 2010 ca. 30 scientific staff (7 Postdocs und 20 PhD students, master students) http://ailab.ifi.uzh.ch/ Funding: EU-ICT (Information and Communication Technologies) (Cognitive Systems, FET — Future and Emergent Technologies) University of Zurich Swiss National Science Foundation Private Sector, Sponsors Foundations, CIAN (Club of Intelligent Angels) 99Freitag, 4. März 2011
    • Research program artificial evolution dynamic movement morphogenesis and locomotion biorobotics theory of self- intelligence learning, development organization, neural modeling self-assembly grand goal grand goal humanoid robots modular robotics vision assistive robotics prosthetics and educational “life as it neural interfacing technology could be” “life as it could be” applications to design business design art, entertainment 100Freitag, 4. März 2011
    • Funding • University of Zurich, Switzerland • Swiss FNS: - From locomotion to cognition - Dynamical coupling in motor-sensory function substitution - From morphology to functionality - Swiss National Competence Center, for Research (NCCR) Robotics • EU-FET: - Locomorph - Octopus - Extended Sensory-Motor Contingencies - iCub (finished) • EU-Cognitive Systems: - ECCERobot - Amarsi - EU-Cog II/III • Private funding/others: - CIAN (Club of Intelligent Angels) - Maxon Motor - Festo - Hasler Foundation - Switch 101 - AwtechFreitag, 4. März 2011
    • Research program Locomorph Morpho-function Octopus artificial dynamic movement evolution and locomotion Locognition Scalable morphogenesis biorobotics self-assemby NCCR Robotics iCub theory of PACE self- ECCERobot intelligence learning, development Started: Dec. 2010 modeling organization, self-assembly neural Amarsi grand goal grand goal humanoid robots modular robotics (Switzerland) assistive robotics vision Robodoc REAL prosthetics and Dyn. Coupling educational “life as it neural interfacing technology EU-Cog II could be” “life as it ALP could be” Prosthetic hand The ShanghAI Lectures business design applications to design art, entertainment in Lab Artists Industrial design 102 Interactive installations and businessFreitag, 4. März 2011
    • NCCR: 12 year perspective EPFL University of Zurich ETH Zurich 103Freitag, 4. März 2011
    • The Zurich AI Lab — Spin-offs • Neuronics • Dynamic Devices • Starmind Innovation • Enexra inc. 104Freitag, 4. März 2011
    • Perception as embodied: The rotating dancer 105Freitag, 4. März 2011
    • Outsourcing? Insourcing? Chinese textile workers discover their power 106Freitag, 4. März 2011