Your SlideShare is downloading. ×
  • Like
Specific function examples
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Now you can save presentations on your phone or tablet

Available for both IPhone and Android

Text the download link to your phone

Standard text messaging rates apply

Specific function examples

  • 853 views
Published

 

Published in Education , Technology
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads

Views

Total Views
853
On SlideShare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
36
Comments
0
Likes
1

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. A Discussion of Different Functions Mathematics 4 June 27, 2012Mathematics 4 () A Discussion of Different Functions June 27, 2012 1 / 14
  • 2. Linear Functionsf (x) = mx + bLinear Function A linear function has the form f (x) = mx + b where m is the slope and b is the y-intercept. Mathematics 4 () A Discussion of Different Functions June 27, 2012 2 / 14
  • 3. Linear Functionsf (x) = mx + bLinear Function A linear function has the form f (x) = mx + b where m is the slope and b is the y-intercept. The domain of a linear function is {x | x ∈ R} Mathematics 4 () A Discussion of Different Functions June 27, 2012 2 / 14
  • 4. Linear Functionsf (x) = mx + bLinear Function A linear function has the form f (x) = mx + b where m is the slope and b is the y-intercept. The domain of a linear function is {x | x ∈ R} The range is {y | y ∈ R} Mathematics 4 () A Discussion of Different Functions June 27, 2012 2 / 14
  • 5. Linear Functionsf (x) = mx + bLinear Function f (x) = f −1 (x) = Mathematics 4 () A Discussion of Different Functions June 27, 2012 3 / 14
  • 6. Quadratic Functionsf (x) = ax2 + bx + cQuadratic Function A quadratic function has the form f (x) = ax2 + bx + c where a, b, c ∈ R, a = 0. Mathematics 4 () A Discussion of Different Functions June 27, 2012 4 / 14
  • 7. Quadratic Functionsf (x) = ax2 + bx + cQuadratic Function A quadratic function has the form f (x) = ax2 + bx + c where a, b, c ∈ R, a = 0. The graph of a quadratic function is a parabola. The graph opens up if a > 0 and opens down when a < 0. Mathematics 4 () A Discussion of Different Functions June 27, 2012 4 / 14
  • 8. Quadratic Functionsf (x) = ax2 + bx + cQuadratic Function A quadratic function has the form f (x) = ax2 + bx + c where a, b, c ∈ R, a = 0. The graph of a quadratic function is a parabola. The graph opens up if a > 0 and opens down when a < 0. The vertex of a parabola is given by the vertex equation −b −b ,f . 2a 2a Mathematics 4 () A Discussion of Different Functions June 27, 2012 4 / 14
  • 9. Quadratic Functionsf (x) = ax2 + bx + cQuadratic Function A quadratic function has the form f (x) = ax2 + bx + c where a, b, c ∈ R, a = 0. The graph of a quadratic function is a parabola. The graph opens up if a > 0 and opens down when a < 0. The vertex of a parabola is given by the vertex equation −b −b ,f . 2a 2a The vertex can also be determined by using completing the square and transforming the equation into the vertex form of the quadratic equation: (y − k) = a (x − h)2 . Mathematics 4 () A Discussion of Different Functions June 27, 2012 4 / 14
  • 10. Quadratic FunctionsExample: Find the vertex (use completing the square), zeros, and graph of f (x) = −2x2 + 8x − 5: Mathematics 4 () A Discussion of Different Functions June 27, 2012 5 / 14
  • 11. Quadratic Functionsf (x) = ax2 + bx + cQuadratic Function The zeros of a quadratic function can be solved by letting f (x) = 0 and solving for x. These are also the x-intercepts of the graph. Mathematics 4 () A Discussion of Different Functions June 27, 2012 6 / 14
  • 12. Quadratic Functionsf (x) = ax2 + bx + cQuadratic Function The zeros of a quadratic function can be solved by letting f (x) = 0 and solving for x. These are also the x-intercepts of the graph. The domain of a quadratic function is {x | x ∈ R}. Mathematics 4 () A Discussion of Different Functions June 27, 2012 6 / 14
  • 13. Quadratic Functionsf (x) = ax2 + bx + cQuadratic Function The zeros of a quadratic function can be solved by letting f (x) = 0 and solving for x. These are also the x-intercepts of the graph. The domain of a quadratic function is {x | x ∈ R}. The range is {y | y ≥ k} if the graph opens up, and {y | y ≤ k} when the graph opens down. Mathematics 4 () A Discussion of Different Functions June 27, 2012 6 / 14
  • 14. Quadratic FunctionsExample:Find the vertex, zeros, domain, range and graph of f (x) = 3x2 + 3x + 2. Identify the interval for which the graph is increasing and decreasing: Mathematics 4 () A Discussion of Different Functions June 27, 2012 7 / 14
  • 15. Quadratic FunctionsExample: Given the function f (x) = 2x2 whose graph is shown below: 1 Modify the function such that the graph will move 2 units up. 2 Modify the new function such that the graph will move 3 units to the left. Mathematics 4 () A Discussion of Different Functions June 27, 2012 8 / 14
  • 16. Absolute Value Functionsf (x) = a |x − h| + kAbsolute Value Function An absolute value function has the form f (x) = a |x − h| + k where a ∈ R, a = 0. Mathematics 4 () A Discussion of Different Functions June 27, 2012 9 / 14
  • 17. Absolute Value Functionsf (x) = a |x − h| + kAbsolute Value Function An absolute value function has the form f (x) = a |x − h| + k where a ∈ R, a = 0. The graph of an absolute value function forms the shape of a V. The graph opens up if a > 0 and opens down when a < 0. Mathematics 4 () A Discussion of Different Functions June 27, 2012 9 / 14
  • 18. Absolute Value Functionsf (x) = a |x − h| + kAbsolute Value Function An absolute value function has the form f (x) = a |x − h| + k where a ∈ R, a = 0. The graph of an absolute value function forms the shape of a V. The graph opens up if a > 0 and opens down when a < 0. The slope of the legs of an absolute value function is given by both a and −a. Mathematics 4 () A Discussion of Different Functions June 27, 2012 9 / 14
  • 19. Absolute Value Functionsf (x) = a |x − h| + kAbsolute Value Function An absolute value function has the form f (x) = a |x − h| + k where a ∈ R, a = 0. The graph of an absolute value function forms the shape of a V. The graph opens up if a > 0 and opens down when a < 0. The slope of the legs of an absolute value function is given by both a and −a. The vertex of the graph of an absolute value function is given by the (h, k). Mathematics 4 () A Discussion of Different Functions June 27, 2012 9 / 14
  • 20. Absolute Value FunctionsExample: Find the vertex, zeros, domain, range and graph of f (x) = 2 |x + 3| − 5. Identify the interval for which the graph is increasing and decreasing: Mathematics 4 () A Discussion of Different Functions June 27, 2012 10 / 14
  • 21. Absolute Value FunctionsExample: Given the graph below of the previous function f (x) = 2 |x + 3| − 5, find the equation of the function for the following cases: 1 The graph is moved two units to the left. Mathematics 4 () A Discussion of Different Functions June 27, 2012 11 / 14
  • 22. Absolute Value FunctionsExample: Given the graph below of the previous function f (x) = 2 |x + 3| − 5, find the equation of the function for the following cases: 1 The graph is moved two units to the left. 2 The graph is then moved 4 units up. Mathematics 4 () A Discussion of Different Functions June 27, 2012 11 / 14
  • 23. Absolute Value FunctionsExample: Given the graph below of the previous function f (x) = 2 |x + 3| − 5, find the equation of the function for the following cases: 1 The graph is moved two units to the left. 2 The graph is then moved 4 units up. 3 The direction of the graph is then inverted. Mathematics 4 () A Discussion of Different Functions June 27, 2012 11 / 14
  • 24. Absolute Value FunctionsExample: Given the graph below of the previous function f (x) = 2 |x + 3| − 5, find the equation of the function for the following cases: 1 The graph is moved two units to the left. 2 The graph is then moved 4 units up. 3 The direction of the graph is then inverted. 4 The slopes of the legs are then reduced to 0.5 and −0.5. Mathematics 4 () A Discussion of Different Functions June 27, 2012 11 / 14
  • 25. The Square Root FunctionConsider the function f (x) = x2 , whose domain is {x | x ≥ 0}. f (x) = x2 , x ≥ 0 f −1 (x) =Find the inverse of this function both algebraically and graphically. Mathematics 4 () A Discussion of Different Functions June 27, 2012 12 / 14
  • 26. The Square Root Function √Given the square root function f (x) = x, whose graph is shown below: 1 Determine the domain and range. √ f (x) = x Mathematics 4 () A Discussion of Different Functions June 27, 2012 13 / 14
  • 27. The Square Root Function √Given the square root function f (x) = x, whose graph is shown below: 1 Determine the domain and range. 2 Move the graph 2 units up. √ f (x) = x Mathematics 4 () A Discussion of Different Functions June 27, 2012 13 / 14
  • 28. The Square Root Function √Given the square root function f (x) = x, whose graph is shown below: 1 Determine the domain and range. 2 Move the graph 2 units up. 3 Move the graph 3 units right. √ f (x) = x Mathematics 4 () A Discussion of Different Functions June 27, 2012 13 / 14
  • 29. The Square Root Function √Given the square root function f (x) = x, whose graph is shown below: 1 Determine the domain and range. 2 Move the graph 2 units up. 3 Move the graph 3 units right. 4 Flip the graph horizontally. √ f (x) = x Mathematics 4 () A Discussion of Different Functions June 27, 2012 13 / 14
  • 30. The Square Root Function √Given the square root function f (x) = x, whose graph is shown below: 1 Determine the domain and range. 2 Move the graph 2 units up. 3 Move the graph 3 units right. 4 Flip the graph horizontally. √ f (x) = x 5 Flip the graph vertically. Mathematics 4 () A Discussion of Different Functions June 27, 2012 13 / 14
  • 31. The Square Root FunctionGiven the graph of the square root function below, find the equation ofthe function. Mathematics 4 () A Discussion of Different Functions June 27, 2012 14 / 14