SlideShare a Scribd company logo
1 of 75
Download to read offline
Axioms on the Set of Real Numbers

                          Mathematics 4


                            June 7, 2011




Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   1 / 14
Field Axioms



Fields
A field is a set where the following axioms hold:




     Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   2 / 14
Field Axioms



Fields
A field is a set where the following axioms hold:
    Closure Axioms




     Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   2 / 14
Field Axioms



Fields
A field is a set where the following axioms hold:
    Closure Axioms
    Associativity Axioms




     Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   2 / 14
Field Axioms



Fields
A field is a set where the following axioms hold:
    Closure Axioms
    Associativity Axioms
    Commutativity Axioms




     Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   2 / 14
Field Axioms



Fields
A field is a set where the following axioms hold:
    Closure Axioms
    Associativity Axioms
    Commutativity Axioms
    Distributive Property of Multiplication over Addition




     Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   2 / 14
Field Axioms



Fields
A field is a set where the following axioms hold:
    Closure Axioms
    Associativity Axioms
    Commutativity Axioms
    Distributive Property of Multiplication over Addition
    Existence of an Identity Element




     Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   2 / 14
Field Axioms



Fields
A field is a set where the following axioms hold:
    Closure Axioms
    Associativity Axioms
    Commutativity Axioms
    Distributive Property of Multiplication over Addition
    Existence of an Identity Element
    Existence of an Inverse Element




     Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   2 / 14
Field Axioms: Closure




Closure Axioms
Addition: ∀ a, b ∈ R : (a + b) ∈ R.
Multiplication: ∀ a, b ∈ R, (a · b) ∈ R.




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   3 / 14
Field Axioms: Closure



Identify if the following sets are closed under addition and
multiplication:




     Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   4 / 14
Field Axioms: Closure



Identify if the following sets are closed under addition and
multiplication:
  1   Z+




      Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   4 / 14
Field Axioms: Closure



Identify if the following sets are closed under addition and
multiplication:
  1   Z+
  2   Z−




      Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   4 / 14
Field Axioms: Closure



Identify if the following sets are closed under addition and
multiplication:
  1   Z+
  2   Z−
  3   {−1, 0, 1}




      Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   4 / 14
Field Axioms: Closure



Identify if the following sets are closed under addition and
multiplication:
  1   Z+
  2   Z−
  3   {−1, 0, 1}
  4   {2, 4, 6, 8, 10, ...}




      Mathematics 4 ()        Axioms on the Set of Real Numbers   June 7, 2011   4 / 14
Field Axioms: Closure



Identify if the following sets are closed under addition and
multiplication:
  1   Z+
  2   Z−
  3   {−1, 0, 1}
  4   {2, 4, 6, 8, 10, ...}
  5   {−2, −1, 0, 1, 2, 3, ...}




      Mathematics 4 ()            Axioms on the Set of Real Numbers   June 7, 2011   4 / 14
Field Axioms: Closure



Identify if the following sets are closed under addition and
multiplication:
  1   Z+
  2   Z−
  3   {−1, 0, 1}
  4   {2, 4, 6, 8, 10, ...}
  5   {−2, −1, 0, 1, 2, 3, ...}
  6   Q




      Mathematics 4 ()            Axioms on the Set of Real Numbers   June 7, 2011   4 / 14
Field Axioms: Closure



Identify if the following sets are closed under addition and
multiplication:
  1   Z+
  2   Z−
  3   {−1, 0, 1}
  4   {2, 4, 6, 8, 10, ...}
  5   {−2, −1, 0, 1, 2, 3, ...}
  6   Q
  7   Q




      Mathematics 4 ()            Axioms on the Set of Real Numbers   June 7, 2011   4 / 14
Field Axioms: Associativity




Associativity Axioms




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   5 / 14
Field Axioms: Associativity




Associativity Axioms
    Addition




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   5 / 14
Field Axioms: Associativity




Associativity Axioms
    Addition
    ∀ a, b, c ∈ R, (a + b) + c = a + (b + c)




     Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   5 / 14
Field Axioms: Associativity




Associativity Axioms
    Addition
    ∀ a, b, c ∈ R, (a + b) + c = a + (b + c)
    Multiplication




     Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   5 / 14
Field Axioms: Associativity




Associativity Axioms
    Addition
    ∀ a, b, c ∈ R, (a + b) + c = a + (b + c)
    Multiplication
    ∀ a, b, c ∈ R, (a · b) · c = a · (b · c)




     Mathematics 4 ()        Axioms on the Set of Real Numbers   June 7, 2011   5 / 14
Field Axioms: Commutativity




Commutativity Axioms




    Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   6 / 14
Field Axioms: Commutativity




Commutativity Axioms
   Addition




    Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   6 / 14
Field Axioms: Commutativity




Commutativity Axioms
   Addition
   ∀ a, b ∈ R, a + b = b + a




    Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   6 / 14
Field Axioms: Commutativity




Commutativity Axioms
   Addition
   ∀ a, b ∈ R, a + b = b + a
   Multiplication




    Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   6 / 14
Field Axioms: Commutativity




Commutativity Axioms
   Addition
   ∀ a, b ∈ R, a + b = b + a
   Multiplication
   ∀ a, b ∈ R, a · b = b · a




    Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   6 / 14
Field Axioms: DPMA




Distributive Property of Multiplication over Addition
∀ a, b, c ∈ R, c · (a + b) = c · a + c · b




      Mathematics 4 ()       Axioms on the Set of Real Numbers   June 7, 2011   7 / 14
Field Axioms: Existence of an Identity Element




Existence of an Identity Element




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   8 / 14
Field Axioms: Existence of an Identity Element




Existence of an Identity Element
    Addition




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   8 / 14
Field Axioms: Existence of an Identity Element




Existence of an Identity Element
    Addition
    ∃! 0 : a + 0 = a for a ∈ R.




     Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   8 / 14
Field Axioms: Existence of an Identity Element




Existence of an Identity Element
    Addition
    ∃! 0 : a + 0 = a for a ∈ R.
    Multiplication




     Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   8 / 14
Field Axioms: Existence of an Identity Element




Existence of an Identity Element
    Addition
    ∃! 0 : a + 0 = a for a ∈ R.
    Multiplication
    ∃! 1 : a · 1 = a and 1 · a = a for a ∈ R.




     Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   8 / 14
Field Axioms: Existence of an Inverse Element




Existence of an Inverse Element




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   9 / 14
Field Axioms: Existence of an Inverse Element




Existence of an Inverse Element
    Addition




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   9 / 14
Field Axioms: Existence of an Inverse Element




Existence of an Inverse Element
    Addition
    ∀ a ∈ R, ∃! (-a) : a + (−a) = 0




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   9 / 14
Field Axioms: Existence of an Inverse Element




Existence of an Inverse Element
    Addition
    ∀ a ∈ R, ∃! (-a) : a + (−a) = 0
    Multiplication




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   9 / 14
Field Axioms: Existence of an Inverse Element




Existence of an Inverse Element
    Addition
    ∀ a ∈ R, ∃! (-a) : a + (−a) = 0
    Multiplication
                        1          1
    ∀ a ∈ R − {0}, ∃!   a   : a·   a   =1




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   9 / 14
Equality Axioms




Equality Axioms




    Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   10 / 14
Equality Axioms




Equality Axioms
 1   Reflexivity: ∀ a ∈ R : a = a




     Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   10 / 14
Equality Axioms




Equality Axioms
 1   Reflexivity: ∀ a ∈ R : a = a
 2   Symmetry: ∀ a, b ∈ R : a = b → b = a




     Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   10 / 14
Equality Axioms




Equality Axioms
 1   Reflexivity: ∀ a ∈ R : a = a
 2   Symmetry: ∀ a, b ∈ R : a = b → b = a
 3   Transitivity: ∀ a, b, c ∈ R : a = b ∧ b = c → a = c




     Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   10 / 14
Equality Axioms




Equality Axioms
 1   Reflexivity: ∀ a ∈ R : a = a
 2   Symmetry: ∀ a, b ∈ R : a = b → b = a
 3   Transitivity: ∀ a, b, c ∈ R : a = b ∧ b = c → a = c
 4   Addition PE: ∀ a, b, c ∈ R : a = b → a + c = b + c




     Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   10 / 14
Equality Axioms




Equality Axioms
 1   Reflexivity: ∀ a ∈ R : a = a
 2   Symmetry: ∀ a, b ∈ R : a = b → b = a
 3   Transitivity: ∀ a, b, c ∈ R : a = b ∧ b = c → a = c
 4   Addition PE: ∀ a, b, c ∈ R : a = b → a + c = b + c
 5   Multiplication PE: ∀ a, b, c ∈ R : a = b → a · c = b · c




     Mathematics 4 ()      Axioms on the Set of Real Numbers    June 7, 2011   10 / 14
Theorems from the Field and Equality Axioms




Cancellation for Addition: ∀ a, b, c ∈ R : a + c = b + c → a = c
            a+c=b+c                    Given
  a + c + (−c) = b + c + (−c)          APE
 a + (c + (−c)) = b + (c + (−c))       APA
            a+0=b+0                    ∃ additive inverses
                  a=b                  ∃ additive identity




     Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   11 / 14
Theorems from the Field and Equality Axioms

Prove the following theorems




    Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   12 / 14
Theorems from the Field and Equality Axioms

Prove the following theorems
    Involution: ∀ a ∈ R : − (−a) = a




    Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   12 / 14
Theorems from the Field and Equality Axioms

Prove the following theorems
    Involution: ∀ a ∈ R : − (−a) = a
    Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0




    Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   12 / 14
Theorems from the Field and Equality Axioms

Prove the following theorems
    Involution: ∀ a ∈ R : − (−a) = a
    Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0
    ∀ a, b ∈ R : (−a) · b = −(ab)




    Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   12 / 14
Theorems from the Field and Equality Axioms

Prove the following theorems
    Involution: ∀ a ∈ R : − (−a) = a
    Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0
    ∀ a, b ∈ R : (−a) · b = −(ab)
    ∀ b ∈ R : (−1) · b = −b       (Corollary of previous item)




    Mathematics 4 ()      Axioms on the Set of Real Numbers      June 7, 2011   12 / 14
Theorems from the Field and Equality Axioms

Prove the following theorems
    Involution: ∀ a ∈ R : − (−a) = a
    Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0
    ∀ a, b ∈ R : (−a) · b = −(ab)
    ∀ b ∈ R : (−1) · b = −b       (Corollary of previous item)
    (−1) · (−1) = 1    (Corollary of previous item)




    Mathematics 4 ()      Axioms on the Set of Real Numbers      June 7, 2011   12 / 14
Theorems from the Field and Equality Axioms

Prove the following theorems
    Involution: ∀ a ∈ R : − (−a) = a
    Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0
    ∀ a, b ∈ R : (−a) · b = −(ab)
    ∀ b ∈ R : (−1) · b = −b       (Corollary of previous item)
    (−1) · (−1) = 1    (Corollary of previous item)
    ∀ a, b ∈ R : (−a) · (−b) = a · b




    Mathematics 4 ()      Axioms on the Set of Real Numbers      June 7, 2011   12 / 14
Theorems from the Field and Equality Axioms

Prove the following theorems
    Involution: ∀ a ∈ R : − (−a) = a
    Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0
    ∀ a, b ∈ R : (−a) · b = −(ab)
    ∀ b ∈ R : (−1) · b = −b       (Corollary of previous item)
    (−1) · (−1) = 1    (Corollary of previous item)
    ∀ a, b ∈ R : (−a) · (−b) = a · b
    ∀ a, b ∈ R : − (a + b) = (−a) + (−b)




    Mathematics 4 ()      Axioms on the Set of Real Numbers      June 7, 2011   12 / 14
Theorems from the Field and Equality Axioms

Prove the following theorems
    Involution: ∀ a ∈ R : − (−a) = a
    Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0
    ∀ a, b ∈ R : (−a) · b = −(ab)
    ∀ b ∈ R : (−1) · b = −b       (Corollary of previous item)
    (−1) · (−1) = 1    (Corollary of previous item)
    ∀ a, b ∈ R : (−a) · (−b) = a · b
    ∀ a, b ∈ R : − (a + b) = (−a) + (−b)
    Cancellation Law for Multiplication:
    ∀ a, b, c ∈ R, c = 0 : ac = bc → a = b




    Mathematics 4 ()      Axioms on the Set of Real Numbers      June 7, 2011   12 / 14
Theorems from the Field and Equality Axioms

Prove the following theorems
    Involution: ∀ a ∈ R : − (−a) = a
    Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0
    ∀ a, b ∈ R : (−a) · b = −(ab)
    ∀ b ∈ R : (−1) · b = −b       (Corollary of previous item)
    (−1) · (−1) = 1    (Corollary of previous item)
    ∀ a, b ∈ R : (−a) · (−b) = a · b
    ∀ a, b ∈ R : − (a + b) = (−a) + (−b)
    Cancellation Law for Multiplication:
    ∀ a, b, c ∈ R, c = 0 : ac = bc → a = b
                         1
    ∀ a ∈ R, a = 0 :          =a
                      (1/a)


    Mathematics 4 ()      Axioms on the Set of Real Numbers      June 7, 2011   12 / 14
Order Axioms




Order Axioms: Trichotomy
∀ a, b ∈ R, only one of the following is true:




     Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   13 / 14
Order Axioms




Order Axioms: Trichotomy
∀ a, b ∈ R, only one of the following is true:
  1   a>b




      Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   13 / 14
Order Axioms




Order Axioms: Trichotomy
∀ a, b ∈ R, only one of the following is true:
  1   a>b
  2   a=b




      Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   13 / 14
Order Axioms




Order Axioms: Trichotomy
∀ a, b ∈ R, only one of the following is true:
  1   a>b
  2   a=b
  3   a<b




      Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   13 / 14
Order Axioms



Order Axioms: Inequalities




     Mathematics 4 ()   Axioms on the Set of Real Numbers   June 7, 2011   14 / 14
Order Axioms



Order Axioms: Inequalities
 1   Transitivity for Inequalities




     Mathematics 4 ()        Axioms on the Set of Real Numbers   June 7, 2011   14 / 14
Order Axioms



Order Axioms: Inequalities
 1   Transitivity for Inequalities
     ∀ a, b, c ∈ R : a > b ∧ b > c → a > c




     Mathematics 4 ()        Axioms on the Set of Real Numbers   June 7, 2011   14 / 14
Order Axioms



Order Axioms: Inequalities
 1   Transitivity for Inequalities
     ∀ a, b, c ∈ R : a > b ∧ b > c → a > c
 2   Addition Property of Inequality




     Mathematics 4 ()        Axioms on the Set of Real Numbers   June 7, 2011   14 / 14
Order Axioms



Order Axioms: Inequalities
 1   Transitivity for Inequalities
     ∀ a, b, c ∈ R : a > b ∧ b > c → a > c
 2   Addition Property of Inequality
     ∀ a, b, c ∈ R : a > b → a + c > b + c




     Mathematics 4 ()        Axioms on the Set of Real Numbers   June 7, 2011   14 / 14
Order Axioms



Order Axioms: Inequalities
 1   Transitivity for Inequalities
     ∀ a, b, c ∈ R : a > b ∧ b > c → a > c
 2   Addition Property of Inequality
     ∀ a, b, c ∈ R : a > b → a + c > b + c
 3   Multiplication Property of Inequality




     Mathematics 4 ()        Axioms on the Set of Real Numbers   June 7, 2011   14 / 14
Order Axioms



Order Axioms: Inequalities
 1   Transitivity for Inequalities
     ∀ a, b, c ∈ R : a > b ∧ b > c → a > c
 2   Addition Property of Inequality
     ∀ a, b, c ∈ R : a > b → a + c > b + c
 3   Multiplication Property of Inequality
     ∀ a, b, c ∈ R, c > 0 : a > b → a · c > b · c




     Mathematics 4 ()        Axioms on the Set of Real Numbers   June 7, 2011   14 / 14
Theorems from the Order Axioms

Prove the following theorems




    Mathematics 4 ()    Axioms on the Set of Real Numbers   June 7, 2011   15 / 14
Theorems from the Order Axioms

Prove the following theorems
    (4-1) R+ is closed under addition:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0




    Mathematics 4 ()     Axioms on the Set of Real Numbers   June 7, 2011   15 / 14
Theorems from the Order Axioms

Prove the following theorems
    (4-1) R+ is closed under addition:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0
    (4-2) R+ is closed under multiplication:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0




    Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   15 / 14
Theorems from the Order Axioms

Prove the following theorems
    (4-1) R+ is closed under addition:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0
    (4-2) R+ is closed under multiplication:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0
    (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0)




    Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   15 / 14
Theorems from the Order Axioms

Prove the following theorems
    (4-1) R+ is closed under addition:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0
    (4-2) R+ is closed under multiplication:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0
    (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0)
    (4-4) ∀ a, b ∈ R : a > b → −b > −a




    Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   15 / 14
Theorems from the Order Axioms

Prove the following theorems
    (4-1) R+ is closed under addition:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0
    (4-2) R+ is closed under multiplication:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0
    (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0)
    (4-4) ∀ a, b ∈ R : a > b → −b > −a
    (4-5) ∀ a ∈ R : (a2 = 0) ∨ (a2 > 0)




    Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   15 / 14
Theorems from the Order Axioms

Prove the following theorems
    (4-1) R+ is closed under addition:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0
    (4-2) R+ is closed under multiplication:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0
    (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0)
    (4-4) ∀ a, b ∈ R : a > b → −b > −a
    (4-5) ∀ a ∈ R : (a2 = 0) ∨ (a2 > 0)
    (4-6) 1 > 0




    Mathematics 4 ()      Axioms on the Set of Real Numbers   June 7, 2011   15 / 14
Theorems from the Order Axioms

Prove the following theorems
    (4-1) R+ is closed under addition:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0
    (4-2) R+ is closed under multiplication:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0
    (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0)
    (4-4) ∀ a, b ∈ R : a > b → −b > −a
    (4-5) ∀ a ∈ R : (a2 = 0) ∨ (a2 > 0)
    (4-6) 1 > 0
    ∀ a, b, c ∈ R : (a > b) ∧ (0 > c) → b · c > a · c




    Mathematics 4 ()       Axioms on the Set of Real Numbers   June 7, 2011   15 / 14
Theorems from the Order Axioms

Prove the following theorems
    (4-1) R+ is closed under addition:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0
    (4-2) R+ is closed under multiplication:
    ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0
    (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0)
    (4-4) ∀ a, b ∈ R : a > b → −b > −a
    (4-5) ∀ a ∈ R : (a2 = 0) ∨ (a2 > 0)
    (4-6) 1 > 0
    ∀ a, b, c ∈ R : (a > b) ∧ (0 > c) → b · c > a · c
                         1
    ∀ a ∈ R: a > 0 → > 0
                         a


    Mathematics 4 ()       Axioms on the Set of Real Numbers   June 7, 2011   15 / 14

More Related Content

What's hot

4 2 rules of radicals
4 2 rules of radicals4 2 rules of radicals
4 2 rules of radicalsmath123b
 
Joint variation
Joint variationJoint variation
Joint variationmstf mstf
 
Relations and functions
Relations and functions Relations and functions
Relations and functions Leslie Amoguis
 
Binomial Theorem
Binomial TheoremBinomial Theorem
Binomial Theoremitutor
 
Linear dependence & independence vectors
Linear dependence & independence vectorsLinear dependence & independence vectors
Linear dependence & independence vectorsRakib Hossain
 
Liner algebra-vector space-1 introduction to vector space and subspace
Liner algebra-vector space-1   introduction to vector space and subspace Liner algebra-vector space-1   introduction to vector space and subspace
Liner algebra-vector space-1 introduction to vector space and subspace Manikanta satyala
 
10.4 applications of linear equations
10.4 applications of linear equations10.4 applications of linear equations
10.4 applications of linear equationsGlenSchlee
 
PPt on Functions
PPt on FunctionsPPt on Functions
PPt on Functionscoolhanddav
 
Quadratic Formula Presentation
Quadratic Formula PresentationQuadratic Formula Presentation
Quadratic Formula Presentationanjuli1580
 
Logarithm lesson
Logarithm lessonLogarithm lesson
Logarithm lessonyrubins
 
Factors of polynomial
Factors of polynomialFactors of polynomial
Factors of polynomialRochelleOliva
 
Sum and product of roots
Sum and product of rootsSum and product of roots
Sum and product of rootsMajesty Ortiz
 
System Of Linear Equations
System Of Linear EquationsSystem Of Linear Equations
System Of Linear Equationssaahil kshatriya
 
Relations and functions
Relations and functionsRelations and functions
Relations and functionsHeather Scott
 
Mathematics 10 - Lesson 1: Number Pattern
Mathematics 10 - Lesson 1: Number PatternMathematics 10 - Lesson 1: Number Pattern
Mathematics 10 - Lesson 1: Number PatternJuan Miguel Palero
 
Difference between grouped and ungrouped data
Difference between grouped and ungrouped dataDifference between grouped and ungrouped data
Difference between grouped and ungrouped dataAtiq Rehman
 
Operations on sets
Operations on setsOperations on sets
Operations on setsrenceLongcop
 

What's hot (20)

4 2 rules of radicals
4 2 rules of radicals4 2 rules of radicals
4 2 rules of radicals
 
Joint variation
Joint variationJoint variation
Joint variation
 
Relations and functions
Relations and functions Relations and functions
Relations and functions
 
Binomial Theorem
Binomial TheoremBinomial Theorem
Binomial Theorem
 
Linear dependence & independence vectors
Linear dependence & independence vectorsLinear dependence & independence vectors
Linear dependence & independence vectors
 
Liner algebra-vector space-1 introduction to vector space and subspace
Liner algebra-vector space-1   introduction to vector space and subspace Liner algebra-vector space-1   introduction to vector space and subspace
Liner algebra-vector space-1 introduction to vector space and subspace
 
10.4 applications of linear equations
10.4 applications of linear equations10.4 applications of linear equations
10.4 applications of linear equations
 
PPt on Functions
PPt on FunctionsPPt on Functions
PPt on Functions
 
Limits, Continuity & Differentiation (Theory)
Limits, Continuity & Differentiation (Theory)Limits, Continuity & Differentiation (Theory)
Limits, Continuity & Differentiation (Theory)
 
Quadratic Formula Presentation
Quadratic Formula PresentationQuadratic Formula Presentation
Quadratic Formula Presentation
 
Logarithm lesson
Logarithm lessonLogarithm lesson
Logarithm lesson
 
Factors of polynomial
Factors of polynomialFactors of polynomial
Factors of polynomial
 
Sum and product of roots
Sum and product of rootsSum and product of roots
Sum and product of roots
 
the inverse of the matrix
the inverse of the matrixthe inverse of the matrix
the inverse of the matrix
 
System Of Linear Equations
System Of Linear EquationsSystem Of Linear Equations
System Of Linear Equations
 
Relations and functions
Relations and functionsRelations and functions
Relations and functions
 
Mathematics 10 - Lesson 1: Number Pattern
Mathematics 10 - Lesson 1: Number PatternMathematics 10 - Lesson 1: Number Pattern
Mathematics 10 - Lesson 1: Number Pattern
 
Difference between grouped and ungrouped data
Difference between grouped and ungrouped dataDifference between grouped and ungrouped data
Difference between grouped and ungrouped data
 
Limit and continuity (2)
Limit and continuity (2)Limit and continuity (2)
Limit and continuity (2)
 
Operations on sets
Operations on setsOperations on sets
Operations on sets
 

More from Leo Crisologo

Math 4 graphing rational functions
Math 4 graphing rational functionsMath 4 graphing rational functions
Math 4 graphing rational functionsLeo Crisologo
 
More theorems on polynomial functions
More theorems on polynomial functionsMore theorems on polynomial functions
More theorems on polynomial functionsLeo Crisologo
 
Theorems on polynomial functions
Theorems on polynomial functionsTheorems on polynomial functions
Theorems on polynomial functionsLeo Crisologo
 
Polynomial functions
Polynomial functionsPolynomial functions
Polynomial functionsLeo Crisologo
 
Math 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbersMath 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbersLeo Crisologo
 
Specific function examples
Specific function examplesSpecific function examples
Specific function examplesLeo Crisologo
 
Inverse of functions
Inverse of functionsInverse of functions
Inverse of functionsLeo Crisologo
 
Math 4 introduction - What is Mathematics for?
Math 4 introduction - What is Mathematics for?Math 4 introduction - What is Mathematics for?
Math 4 introduction - What is Mathematics for?Leo Crisologo
 
Permutations and combinations examples
Permutations and combinations examplesPermutations and combinations examples
Permutations and combinations examplesLeo Crisologo
 
Sequences and series
Sequences and seriesSequences and series
Sequences and seriesLeo Crisologo
 
Powers and Roots of Complex numbers
Powers and Roots of Complex numbersPowers and Roots of Complex numbers
Powers and Roots of Complex numbersLeo Crisologo
 
Right triangle problems
Right triangle problemsRight triangle problems
Right triangle problemsLeo Crisologo
 
Inverse trigonometric functions
Inverse trigonometric functionsInverse trigonometric functions
Inverse trigonometric functionsLeo Crisologo
 
Graphing trigonometric functions
Graphing trigonometric functionsGraphing trigonometric functions
Graphing trigonometric functionsLeo Crisologo
 
Circles and Tangent Lines
Circles and Tangent LinesCircles and Tangent Lines
Circles and Tangent LinesLeo Crisologo
 
Circles - Degenerate and Null cases
Circles - Degenerate and Null casesCircles - Degenerate and Null cases
Circles - Degenerate and Null casesLeo Crisologo
 

More from Leo Crisologo (20)

Math 4 graphing rational functions
Math 4 graphing rational functionsMath 4 graphing rational functions
Math 4 graphing rational functions
 
More theorems on polynomial functions
More theorems on polynomial functionsMore theorems on polynomial functions
More theorems on polynomial functions
 
Theorems on polynomial functions
Theorems on polynomial functionsTheorems on polynomial functions
Theorems on polynomial functions
 
Polynomial functions
Polynomial functionsPolynomial functions
Polynomial functions
 
Math 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbersMath 4 axioms on the set of real numbers
Math 4 axioms on the set of real numbers
 
Completeness axiom
Completeness axiomCompleteness axiom
Completeness axiom
 
Specific function examples
Specific function examplesSpecific function examples
Specific function examples
 
Inverse of functions
Inverse of functionsInverse of functions
Inverse of functions
 
Functions
FunctionsFunctions
Functions
 
Math 4 introduction - What is Mathematics for?
Math 4 introduction - What is Mathematics for?Math 4 introduction - What is Mathematics for?
Math 4 introduction - What is Mathematics for?
 
Permutations and combinations examples
Permutations and combinations examplesPermutations and combinations examples
Permutations and combinations examples
 
Permutations
PermutationsPermutations
Permutations
 
Counting examples
Counting examplesCounting examples
Counting examples
 
Sequences and series
Sequences and seriesSequences and series
Sequences and series
 
Powers and Roots of Complex numbers
Powers and Roots of Complex numbersPowers and Roots of Complex numbers
Powers and Roots of Complex numbers
 
Right triangle problems
Right triangle problemsRight triangle problems
Right triangle problems
 
Inverse trigonometric functions
Inverse trigonometric functionsInverse trigonometric functions
Inverse trigonometric functions
 
Graphing trigonometric functions
Graphing trigonometric functionsGraphing trigonometric functions
Graphing trigonometric functions
 
Circles and Tangent Lines
Circles and Tangent LinesCircles and Tangent Lines
Circles and Tangent Lines
 
Circles - Degenerate and Null cases
Circles - Degenerate and Null casesCircles - Degenerate and Null cases
Circles - Degenerate and Null cases
 

Recently uploaded

The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
Sample pptx for embedding into website for demo
Sample pptx for embedding into website for demoSample pptx for embedding into website for demo
Sample pptx for embedding into website for demoHarshalMandlekar2
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersNicole Novielli
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersRaghuram Pandurangan
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsNathaniel Shimoni
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embeddingZilliz
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 

Recently uploaded (20)

The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
Sample pptx for embedding into website for demo
Sample pptx for embedding into website for demoSample pptx for embedding into website for demo
Sample pptx for embedding into website for demo
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software Developers
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information Developers
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directions
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embedding
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 

Math 4 axioms on the set of real numbers

  • 1. Axioms on the Set of Real Numbers Mathematics 4 June 7, 2011 Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 1 / 14
  • 2. Field Axioms Fields A field is a set where the following axioms hold: Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 2 / 14
  • 3. Field Axioms Fields A field is a set where the following axioms hold: Closure Axioms Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 2 / 14
  • 4. Field Axioms Fields A field is a set where the following axioms hold: Closure Axioms Associativity Axioms Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 2 / 14
  • 5. Field Axioms Fields A field is a set where the following axioms hold: Closure Axioms Associativity Axioms Commutativity Axioms Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 2 / 14
  • 6. Field Axioms Fields A field is a set where the following axioms hold: Closure Axioms Associativity Axioms Commutativity Axioms Distributive Property of Multiplication over Addition Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 2 / 14
  • 7. Field Axioms Fields A field is a set where the following axioms hold: Closure Axioms Associativity Axioms Commutativity Axioms Distributive Property of Multiplication over Addition Existence of an Identity Element Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 2 / 14
  • 8. Field Axioms Fields A field is a set where the following axioms hold: Closure Axioms Associativity Axioms Commutativity Axioms Distributive Property of Multiplication over Addition Existence of an Identity Element Existence of an Inverse Element Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 2 / 14
  • 9. Field Axioms: Closure Closure Axioms Addition: ∀ a, b ∈ R : (a + b) ∈ R. Multiplication: ∀ a, b ∈ R, (a · b) ∈ R. Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 3 / 14
  • 10. Field Axioms: Closure Identify if the following sets are closed under addition and multiplication: Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 4 / 14
  • 11. Field Axioms: Closure Identify if the following sets are closed under addition and multiplication: 1 Z+ Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 4 / 14
  • 12. Field Axioms: Closure Identify if the following sets are closed under addition and multiplication: 1 Z+ 2 Z− Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 4 / 14
  • 13. Field Axioms: Closure Identify if the following sets are closed under addition and multiplication: 1 Z+ 2 Z− 3 {−1, 0, 1} Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 4 / 14
  • 14. Field Axioms: Closure Identify if the following sets are closed under addition and multiplication: 1 Z+ 2 Z− 3 {−1, 0, 1} 4 {2, 4, 6, 8, 10, ...} Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 4 / 14
  • 15. Field Axioms: Closure Identify if the following sets are closed under addition and multiplication: 1 Z+ 2 Z− 3 {−1, 0, 1} 4 {2, 4, 6, 8, 10, ...} 5 {−2, −1, 0, 1, 2, 3, ...} Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 4 / 14
  • 16. Field Axioms: Closure Identify if the following sets are closed under addition and multiplication: 1 Z+ 2 Z− 3 {−1, 0, 1} 4 {2, 4, 6, 8, 10, ...} 5 {−2, −1, 0, 1, 2, 3, ...} 6 Q Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 4 / 14
  • 17. Field Axioms: Closure Identify if the following sets are closed under addition and multiplication: 1 Z+ 2 Z− 3 {−1, 0, 1} 4 {2, 4, 6, 8, 10, ...} 5 {−2, −1, 0, 1, 2, 3, ...} 6 Q 7 Q Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 4 / 14
  • 18. Field Axioms: Associativity Associativity Axioms Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 5 / 14
  • 19. Field Axioms: Associativity Associativity Axioms Addition Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 5 / 14
  • 20. Field Axioms: Associativity Associativity Axioms Addition ∀ a, b, c ∈ R, (a + b) + c = a + (b + c) Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 5 / 14
  • 21. Field Axioms: Associativity Associativity Axioms Addition ∀ a, b, c ∈ R, (a + b) + c = a + (b + c) Multiplication Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 5 / 14
  • 22. Field Axioms: Associativity Associativity Axioms Addition ∀ a, b, c ∈ R, (a + b) + c = a + (b + c) Multiplication ∀ a, b, c ∈ R, (a · b) · c = a · (b · c) Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 5 / 14
  • 23. Field Axioms: Commutativity Commutativity Axioms Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 6 / 14
  • 24. Field Axioms: Commutativity Commutativity Axioms Addition Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 6 / 14
  • 25. Field Axioms: Commutativity Commutativity Axioms Addition ∀ a, b ∈ R, a + b = b + a Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 6 / 14
  • 26. Field Axioms: Commutativity Commutativity Axioms Addition ∀ a, b ∈ R, a + b = b + a Multiplication Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 6 / 14
  • 27. Field Axioms: Commutativity Commutativity Axioms Addition ∀ a, b ∈ R, a + b = b + a Multiplication ∀ a, b ∈ R, a · b = b · a Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 6 / 14
  • 28. Field Axioms: DPMA Distributive Property of Multiplication over Addition ∀ a, b, c ∈ R, c · (a + b) = c · a + c · b Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 7 / 14
  • 29. Field Axioms: Existence of an Identity Element Existence of an Identity Element Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 8 / 14
  • 30. Field Axioms: Existence of an Identity Element Existence of an Identity Element Addition Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 8 / 14
  • 31. Field Axioms: Existence of an Identity Element Existence of an Identity Element Addition ∃! 0 : a + 0 = a for a ∈ R. Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 8 / 14
  • 32. Field Axioms: Existence of an Identity Element Existence of an Identity Element Addition ∃! 0 : a + 0 = a for a ∈ R. Multiplication Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 8 / 14
  • 33. Field Axioms: Existence of an Identity Element Existence of an Identity Element Addition ∃! 0 : a + 0 = a for a ∈ R. Multiplication ∃! 1 : a · 1 = a and 1 · a = a for a ∈ R. Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 8 / 14
  • 34. Field Axioms: Existence of an Inverse Element Existence of an Inverse Element Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 9 / 14
  • 35. Field Axioms: Existence of an Inverse Element Existence of an Inverse Element Addition Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 9 / 14
  • 36. Field Axioms: Existence of an Inverse Element Existence of an Inverse Element Addition ∀ a ∈ R, ∃! (-a) : a + (−a) = 0 Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 9 / 14
  • 37. Field Axioms: Existence of an Inverse Element Existence of an Inverse Element Addition ∀ a ∈ R, ∃! (-a) : a + (−a) = 0 Multiplication Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 9 / 14
  • 38. Field Axioms: Existence of an Inverse Element Existence of an Inverse Element Addition ∀ a ∈ R, ∃! (-a) : a + (−a) = 0 Multiplication 1 1 ∀ a ∈ R − {0}, ∃! a : a· a =1 Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 9 / 14
  • 39. Equality Axioms Equality Axioms Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 10 / 14
  • 40. Equality Axioms Equality Axioms 1 Reflexivity: ∀ a ∈ R : a = a Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 10 / 14
  • 41. Equality Axioms Equality Axioms 1 Reflexivity: ∀ a ∈ R : a = a 2 Symmetry: ∀ a, b ∈ R : a = b → b = a Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 10 / 14
  • 42. Equality Axioms Equality Axioms 1 Reflexivity: ∀ a ∈ R : a = a 2 Symmetry: ∀ a, b ∈ R : a = b → b = a 3 Transitivity: ∀ a, b, c ∈ R : a = b ∧ b = c → a = c Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 10 / 14
  • 43. Equality Axioms Equality Axioms 1 Reflexivity: ∀ a ∈ R : a = a 2 Symmetry: ∀ a, b ∈ R : a = b → b = a 3 Transitivity: ∀ a, b, c ∈ R : a = b ∧ b = c → a = c 4 Addition PE: ∀ a, b, c ∈ R : a = b → a + c = b + c Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 10 / 14
  • 44. Equality Axioms Equality Axioms 1 Reflexivity: ∀ a ∈ R : a = a 2 Symmetry: ∀ a, b ∈ R : a = b → b = a 3 Transitivity: ∀ a, b, c ∈ R : a = b ∧ b = c → a = c 4 Addition PE: ∀ a, b, c ∈ R : a = b → a + c = b + c 5 Multiplication PE: ∀ a, b, c ∈ R : a = b → a · c = b · c Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 10 / 14
  • 45. Theorems from the Field and Equality Axioms Cancellation for Addition: ∀ a, b, c ∈ R : a + c = b + c → a = c a+c=b+c Given a + c + (−c) = b + c + (−c) APE a + (c + (−c)) = b + (c + (−c)) APA a+0=b+0 ∃ additive inverses a=b ∃ additive identity Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 11 / 14
  • 46. Theorems from the Field and Equality Axioms Prove the following theorems Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 12 / 14
  • 47. Theorems from the Field and Equality Axioms Prove the following theorems Involution: ∀ a ∈ R : − (−a) = a Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 12 / 14
  • 48. Theorems from the Field and Equality Axioms Prove the following theorems Involution: ∀ a ∈ R : − (−a) = a Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0 Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 12 / 14
  • 49. Theorems from the Field and Equality Axioms Prove the following theorems Involution: ∀ a ∈ R : − (−a) = a Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0 ∀ a, b ∈ R : (−a) · b = −(ab) Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 12 / 14
  • 50. Theorems from the Field and Equality Axioms Prove the following theorems Involution: ∀ a ∈ R : − (−a) = a Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0 ∀ a, b ∈ R : (−a) · b = −(ab) ∀ b ∈ R : (−1) · b = −b (Corollary of previous item) Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 12 / 14
  • 51. Theorems from the Field and Equality Axioms Prove the following theorems Involution: ∀ a ∈ R : − (−a) = a Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0 ∀ a, b ∈ R : (−a) · b = −(ab) ∀ b ∈ R : (−1) · b = −b (Corollary of previous item) (−1) · (−1) = 1 (Corollary of previous item) Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 12 / 14
  • 52. Theorems from the Field and Equality Axioms Prove the following theorems Involution: ∀ a ∈ R : − (−a) = a Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0 ∀ a, b ∈ R : (−a) · b = −(ab) ∀ b ∈ R : (−1) · b = −b (Corollary of previous item) (−1) · (−1) = 1 (Corollary of previous item) ∀ a, b ∈ R : (−a) · (−b) = a · b Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 12 / 14
  • 53. Theorems from the Field and Equality Axioms Prove the following theorems Involution: ∀ a ∈ R : − (−a) = a Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0 ∀ a, b ∈ R : (−a) · b = −(ab) ∀ b ∈ R : (−1) · b = −b (Corollary of previous item) (−1) · (−1) = 1 (Corollary of previous item) ∀ a, b ∈ R : (−a) · (−b) = a · b ∀ a, b ∈ R : − (a + b) = (−a) + (−b) Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 12 / 14
  • 54. Theorems from the Field and Equality Axioms Prove the following theorems Involution: ∀ a ∈ R : − (−a) = a Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0 ∀ a, b ∈ R : (−a) · b = −(ab) ∀ b ∈ R : (−1) · b = −b (Corollary of previous item) (−1) · (−1) = 1 (Corollary of previous item) ∀ a, b ∈ R : (−a) · (−b) = a · b ∀ a, b ∈ R : − (a + b) = (−a) + (−b) Cancellation Law for Multiplication: ∀ a, b, c ∈ R, c = 0 : ac = bc → a = b Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 12 / 14
  • 55. Theorems from the Field and Equality Axioms Prove the following theorems Involution: ∀ a ∈ R : − (−a) = a Zero Property of Multiplication: ∀ a ∈ R : a · 0 = 0 ∀ a, b ∈ R : (−a) · b = −(ab) ∀ b ∈ R : (−1) · b = −b (Corollary of previous item) (−1) · (−1) = 1 (Corollary of previous item) ∀ a, b ∈ R : (−a) · (−b) = a · b ∀ a, b ∈ R : − (a + b) = (−a) + (−b) Cancellation Law for Multiplication: ∀ a, b, c ∈ R, c = 0 : ac = bc → a = b 1 ∀ a ∈ R, a = 0 : =a (1/a) Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 12 / 14
  • 56. Order Axioms Order Axioms: Trichotomy ∀ a, b ∈ R, only one of the following is true: Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 13 / 14
  • 57. Order Axioms Order Axioms: Trichotomy ∀ a, b ∈ R, only one of the following is true: 1 a>b Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 13 / 14
  • 58. Order Axioms Order Axioms: Trichotomy ∀ a, b ∈ R, only one of the following is true: 1 a>b 2 a=b Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 13 / 14
  • 59. Order Axioms Order Axioms: Trichotomy ∀ a, b ∈ R, only one of the following is true: 1 a>b 2 a=b 3 a<b Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 13 / 14
  • 60. Order Axioms Order Axioms: Inequalities Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 14 / 14
  • 61. Order Axioms Order Axioms: Inequalities 1 Transitivity for Inequalities Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 14 / 14
  • 62. Order Axioms Order Axioms: Inequalities 1 Transitivity for Inequalities ∀ a, b, c ∈ R : a > b ∧ b > c → a > c Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 14 / 14
  • 63. Order Axioms Order Axioms: Inequalities 1 Transitivity for Inequalities ∀ a, b, c ∈ R : a > b ∧ b > c → a > c 2 Addition Property of Inequality Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 14 / 14
  • 64. Order Axioms Order Axioms: Inequalities 1 Transitivity for Inequalities ∀ a, b, c ∈ R : a > b ∧ b > c → a > c 2 Addition Property of Inequality ∀ a, b, c ∈ R : a > b → a + c > b + c Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 14 / 14
  • 65. Order Axioms Order Axioms: Inequalities 1 Transitivity for Inequalities ∀ a, b, c ∈ R : a > b ∧ b > c → a > c 2 Addition Property of Inequality ∀ a, b, c ∈ R : a > b → a + c > b + c 3 Multiplication Property of Inequality Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 14 / 14
  • 66. Order Axioms Order Axioms: Inequalities 1 Transitivity for Inequalities ∀ a, b, c ∈ R : a > b ∧ b > c → a > c 2 Addition Property of Inequality ∀ a, b, c ∈ R : a > b → a + c > b + c 3 Multiplication Property of Inequality ∀ a, b, c ∈ R, c > 0 : a > b → a · c > b · c Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 14 / 14
  • 67. Theorems from the Order Axioms Prove the following theorems Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 15 / 14
  • 68. Theorems from the Order Axioms Prove the following theorems (4-1) R+ is closed under addition: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0 Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 15 / 14
  • 69. Theorems from the Order Axioms Prove the following theorems (4-1) R+ is closed under addition: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0 (4-2) R+ is closed under multiplication: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0 Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 15 / 14
  • 70. Theorems from the Order Axioms Prove the following theorems (4-1) R+ is closed under addition: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0 (4-2) R+ is closed under multiplication: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0 (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0) Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 15 / 14
  • 71. Theorems from the Order Axioms Prove the following theorems (4-1) R+ is closed under addition: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0 (4-2) R+ is closed under multiplication: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0 (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0) (4-4) ∀ a, b ∈ R : a > b → −b > −a Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 15 / 14
  • 72. Theorems from the Order Axioms Prove the following theorems (4-1) R+ is closed under addition: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0 (4-2) R+ is closed under multiplication: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0 (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0) (4-4) ∀ a, b ∈ R : a > b → −b > −a (4-5) ∀ a ∈ R : (a2 = 0) ∨ (a2 > 0) Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 15 / 14
  • 73. Theorems from the Order Axioms Prove the following theorems (4-1) R+ is closed under addition: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0 (4-2) R+ is closed under multiplication: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0 (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0) (4-4) ∀ a, b ∈ R : a > b → −b > −a (4-5) ∀ a ∈ R : (a2 = 0) ∨ (a2 > 0) (4-6) 1 > 0 Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 15 / 14
  • 74. Theorems from the Order Axioms Prove the following theorems (4-1) R+ is closed under addition: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0 (4-2) R+ is closed under multiplication: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0 (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0) (4-4) ∀ a, b ∈ R : a > b → −b > −a (4-5) ∀ a ∈ R : (a2 = 0) ∨ (a2 > 0) (4-6) 1 > 0 ∀ a, b, c ∈ R : (a > b) ∧ (0 > c) → b · c > a · c Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 15 / 14
  • 75. Theorems from the Order Axioms Prove the following theorems (4-1) R+ is closed under addition: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a + b > 0 (4-2) R+ is closed under multiplication: ∀ a, b ∈ R : a > 0 ∧ b > 0 → a · b > 0 (4-3) ∀ a ∈ R : (a > 0 → −a < 0) ∧ (a < 0 → −a > 0) (4-4) ∀ a, b ∈ R : a > b → −b > −a (4-5) ∀ a ∈ R : (a2 = 0) ∨ (a2 > 0) (4-6) 1 > 0 ∀ a, b, c ∈ R : (a > b) ∧ (0 > c) → b · c > a · c 1 ∀ a ∈ R: a > 0 → > 0 a Mathematics 4 () Axioms on the Set of Real Numbers June 7, 2011 15 / 14