• Share
  • Email
  • Embed
  • Like
  • Private Content
Aligning seqeunces with W-curve and SQL.
 

Aligning seqeunces with W-curve and SQL.

on

  • 1,034 views

The W-curve converts DNA character sequences to 3D geometry. This geometry can be stored in PostGIS and queried to perform fuzzy matching on the sequences. The alignments can be multi-pass to handle ...

The W-curve converts DNA character sequences to 3D geometry. This geometry can be stored in PostGIS and queried to perform fuzzy matching on the sequences. The alignments can be multi-pass to handle sub-sequences.

Statistics

Views

Total Views
1,034
Views on SlideShare
879
Embed Views
155

Actions

Likes
0
Downloads
5
Comments
2

6 Embeds 155

http://localhost 89
http://192.168.0.189 32
http://pesome.com 28
http://www.slashdocs.com 2
http://www.linkedin.com 2
https://twitter.com 2

Accessibility

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel

12 of 2 previous next

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Aligning seqeunces with W-curve and SQL. Aligning seqeunces with W-curve and SQL. Presentation Transcript

    • Standard tools analyze strings● Blast, Fasta, and ClustalW combine strings  with probability tables to compare sequences. – Assume that all differences are significant.● This works well enough in most cases: Fly,  chimp, and human genomes are easily  comparable.● Clustal­omega adds HMM to the mix. – Does a better job keeping sequences compact.● Catch: They dont handle messy DNA.
    • “Messy” sequences ● Several classes of important problems  break the string­based approaches: – Sequences which break probability tables. – Large indels. – Crossovers, inversions, and CNVs. – Discontinuous epitopes. – Microbiome studies with many source  mappings. ● These break  basic assumptions required  for character­string comparisons.
    • Example: Cancer and CNVs● At a smaller scale, CNVs look like  crossovers. – Shotgun sequencing gets partial matches on  multiple genes at the CNV boundary.● Cancer is often messy. – Nature, radiation, or chemical insults leave  the sequences scrambled. – Large indels or crossovers between  chromosomes are common.
    • Dealing with HIV-1● Non­correcting RNA virus: uniform rate of  variation. – High rate of SNPs. – Also high rate of gaps. – Strains run from 8000+ to 10 000+ bases.● Dual­strand package in viron: – Multi­strain crossovers are common.
    • Example: gp120 & CD4 Site● Try this: Align HXB2s gp120 sequence its  HXB2s genome using ClustalW2. – gp120 is ~1500 bases long. – Alignment using ClustalW2 stretches the  gene past 5000 bases.● Now try to analyze the CD4 binding site. – 60+ bases spread across a 1500­base gene in  7 groups of 6­12 bases each. – Clades based on gene use largely white noise.
    • CD4 binding site in gp120
    • Clades Based on gp120
    • Combined work cycle● Part of the problem is combining stages. – Alignment and comparison happen in one  step.● Tools only compare full sequences rather  than subsets. – Messy sequences require multi­stage  alignment. – This doesnt work with partial matches  required for crossovers, CNVs, or really large  indels.
    • Alignments with the W-curve● The W­curve was originally developed for  visual analysis of long sequences.● Later adapted to computed alignments.● The process converts DNA strings to 3D  geometry. – Local state gives more detail for analysis than  character strings. – Comparing geometry produces alignments.
    • Mapping DNA to Geometry● Geometry is produced from DNA sequence.● Successive points move halfway to the corner  associated with a DNA base.
    • Example:“CG”● First point  is halfway  from origin  to (0,­1).● Second  point is  halfway to  (­1,0).
    • Important Properties● The W­curve balances variation and convergence.● Curves vary locally due to differences in sequence  that produce them.● SNPs changes the surrounding curve.● After the sequences converge, so do the curves.● This leaves a few bases of differences after a SNP  or GAP.
    • Convergence aftera SNP● Blue &  Green  curves  converge  within a  few  bases of  the SNP  at base  3.
    • Global view: Wild, D-R HIV-1 POL
    • Local view: Wild, D-R HIV-1 POL
    • SQL & Alignments● This approach is for alignment only. – Sub­sequences can be aligned in a second  pass. – Produces clades based on clinically  significant subsets of the sequence. ● While this can be done manually with  Clustal, the W­curve can automate the  cycle. – Final alignments can be further processed for  scoring by any available method.
    • Storing Geometry● The internals of most “geocoding” rely on  geometric extensions to SQL. ● The standard is called “GIS”, implemented  as “PostGIS” with the Postgres database.● This allows storing W­curves in a  database and querying them. – Global convergence allows for comparison. – Fuzzy matching deals with variation.
    • W-curve & GIS● Due to SNPs and gaps, we need some way  to make a fuzzy comparison of the curves.● Our current approach uses simple  geometry to analyze the distances. – Template and sample vertexes are queried by  geometry. – Ultimately, the approach permits multiple  ways to store and query the curves.
    • Fixed templates, fuzzy samples● We have many, often long templates.● There is one sample, which is often short.● Solution: Attach “fuzzyness” to the  sample: – Store template vertexes as points. – Store samples as circles or polygons. – Ask which template points are within the  sample circles.
    • Fuzzy Matching
    • Query output: ID, base, offset● Select uses within lookup on X­Y plane. – Extracts template sequence ID and Z­axis (base no). – Computes the difference of sample and template base  numbers (“offset”).● Results are sorted by ID, offset, and template base. – Sequences of adjacent template base numbers with the  same offset are alignments. – No need for the sample bases since they can be re­ computed from template base + offset.
    • SQL for extraction is readable select● Only three  b.seq_id, values are  b.base_no, a.base – b.base as delta, required from  from the initial  fuzzy a, fixed b query. where st_contains● From two  ( tables. a.vertex, b.vertex● Where the  ) order by fuzzy vertex  b.seq_id, contains the  b.delta, b.base_no fixed one. ;
    • Query result: “chunks”● Runs of template base numbers are collapsed into  “chunks” of alignment. – [ SeqID, Start, Stop, Offset ] describe the alignment. – Process makes allowances for small (<7 b.p.) gaps.● Amenable to parallel processing: – Database nodes perform “within” query. – Summarized into chunks. – Gathered for final processing.
    • Post-processing chunks● Sort by: start base + offset ascending. stop base  + offset descending● Chunks are ordered along the sample,  longest to shortest.● Now the chunks can be filtered depending  on their source and expected use.
    • Filtering the Chunks● Short reads, crossovers, CNVs, tag searches will  all present different patterns in the chunks. – Short reads look for start­to­end matches. – Crossovers are tiled end­to­end matches from  different sequences. – CNVs have two sequences with a break in the offsets  equal to the CNV size. – Tags show up as multiple matches of the same  length from multiple templates. – Inversions match a reversed copy of the sasmple.
    • Crossovers: Adjacent Chunks● Crossovers will have two chunks from  different sequences.● Whatever their offsets, the two chunks  add up to the full samples length with  minimal gap or overlap.
    • Example: crossover gp120 ...● Sequences with  1 6880 +93 adjacent bases and  1 6881 +93 1 6882 +93 the same offset.  ... 1 7665 +93 ... 2 6307 -82 2 6308 -82 2 6310 -82 2 6311 -82 ... 2 7054 -82
    • Example: crossover gp120● Sequences with  [ 1 6880 7665 +93 ] adjacent bases and  the same offset.● Get collapsed into  chunks. [ 2 6307 7054 -82 ]
    • Example: crossover gp120● Sequences with  [ 2 6225 6972 -82 ] adjacent bases and  [ 1 6973 7758 +93 ] the same offset. ● Get collapsed into  chunks.● Sort by sample bases  from start+offset and  stop + offset.
    • Example: crossover gp120● Sequences with adjacent  [ 2 6225 6972 -82 ] bases and the same  [ 1 6973 7758 +93 ] offset. ● Get collapsed into  chunks.● Sort by sample bases  from start+offset and  stop + offset.● Result is a tiling of  gp120: 6225 – 7758.
    • Working with short reads● The previous example shows the bases on  a known sequence, gp120.● For short reads the sample base  numbering will be 1..N. – Same basic results, with chunk start and  stop from 1 .. N and large offsets. – Known sample bases simplify searches for  tags or relative positions.
    • CNVs have a similar pattern● Three chunks with A­B­A sequence.● Base offset in second block of A is the  same size as the chunk between them.
    • Other filters● Inversions can be detected by reversing  the sample sequence.● Copies of genes will show up as multiple  sequences with full coverage.
    • Occams Razor● All of this is done with the simple  arithmetic: – Numeric sort. – Comparing integers to 1 or 7. – Subtract base numbers. – Adding offsets.● This keeps the algorithm easy to program  and validate.
    • Aligning sub-sequences● Aligning sub­sequences simply reduces the chunk  sizes. – Start with chunks that overlap the sub­sequence. – Generate new chunks with more restrictive start and  stop values. – The sequence, and offset do not change.● Again, nothing more than simple arithmetic is  required for the sub­alignments.
    • Samples start extra-fuzzy● The leading few bases of a sample are  generated from (0,0,0).● Template sequences begin at a point  within the curve.● This can be easily handled by using a  slightly larger radius for the first few  sample bases.
    • Indeterminate bases● FASTQ data includes indeterminate bases  and quality stores. – We can generate multiple points for a base. – These can be stored as “multipoint” in GIS. – Compared using a  convex hull or nearest­ neighbor to the template. – Explicit use of fuzzy math to combined with  quality values?
    • Parallel processing● Recursive algorithms in Blast, Fasta,   Clustal are not amenable to piecewise or  parallel processing.● The query used here is trivial to distribute  across mulitple servers.● Compressing rows into chunks is also  suitable for multi­node processing.● The cycle is suitable for parallel or cloud  computing environments.
    • Summary● Using a stand­alone alignment step is more  flexible for messy DNA.● The W­curve adds enough state to the DNA  sequence that we can query nearby vertexes.● A simple query and filtering allows us to  query sequences for alignment, including  post­processing for sub­sequence alignment.● This is a tool for automating alignment of  messy sequences.