Lesson 6: Polar, Cylindrical, and Spherical coordinates

19,890 views

Published on

"The fact that space is three-dimensional is due to nature. The way we measure it is due to us." Cartesian coordinates are one familiar way to do that, but other coordinate systems exist which are more useful in other situations.

Published in: Education, Technology
1 Comment
6 Likes
Statistics
Notes
No Downloads
Views
Total views
19,890
On SlideShare
0
From Embeds
0
Number of Embeds
88
Actions
Shares
0
Downloads
351
Comments
1
Likes
6
Embeds 0
No embeds

No notes for slide

Lesson 6: Polar, Cylindrical, and Spherical coordinates

  1. 1. Section 9.7 Polar, Cylindrical, and Spherical Coordinates Math 21a February 15, 2008 Announcements No class Monday 2/18. No office hours Tuesday 2/19. Yes office hours Wednesday 2/20 2–4pm SC 323.
  2. 2. Outline Why different coordinate systems? Polar Coordinates Cylindrical Coordinates Spherical Coordinates
  3. 3. Why different coordinate systems? The dimension of space comes from nature The measurement of space comes from us Different coordinate systems are different ways to measure space
  4. 4. Outline Why different coordinate systems? Polar Coordinates Cylindrical Coordinates Spherical Coordinates
  5. 5. Polar Coordinates Conversion from polar to cartesian (rectangular) x = r cos θ y = r sin θ r Conversion from cartesian to y θ polar: x r= x2 + y2 x y y cos θ = sin θ = tan θ = r r x
  6. 6. Example: Polar to Rectangular Example Find the rectangular coordinates of the point with polar √ coordinates ( 2, 5π/4).
  7. 7. Example: Polar to Rectangular Example Find the rectangular coordinates of the point with polar √ coordinates ( 2, 5π/4). Solution We have √ √ −1 x= 2 √ = −1 2 cos (5π/4) = 2 √ √ −1 y = 2 sin (5π/4) = 2 √ = −1 2
  8. 8. Example: Rectangular to Polar Example Find the polar coordinates of the point with rectangular √ coordinates ( 3, 1).
  9. 9. Example: Rectangular to Polar Example Find the polar coordinates of the point with rectangular √ coordinates ( 3, 1). Solution √ √ We have r = 3+1= 4 = 2, and √ 3 1 cos θ = sin θ = 2 2 This is satisfies by θ = π/6.
  10. 10. Worksheet #1–#5
  11. 11. Outline Why different coordinate systems? Polar Coordinates Cylindrical Coordinates Spherical Coordinates
  12. 12. Cylindrical Coordinates Just add the vertical dimension Conversion from cylindrical to cartesian (rectangular): x = r cos θ y = r sin θ z =z Conversion from cartesian to cylindrical: r = x2 + y2 x y y cos θ = sin θ = tan θ = r r x z =z
  13. 13. Worksheet #6–#8
  14. 14. Outline Why different coordinate systems? Polar Coordinates Cylindrical Coordinates Spherical Coordinates
  15. 15. Spherical Coordinates like the earth, but not exactly Conversion from spherical to cartesian (rectangular): x = ρ sin ϕ cos θ y = ρ sin ϕ sin θ z = ρ cos ϕ Conversion from cartesian to spherical: r= x2 + y2 ρ = x2 + y2 + z2 x y y cos θ = sin θ = tan θ = Note: In this picture, r should r r x be ρ. z cos ϕ = ρ
  16. 16. Examples Example Find the spherical coordinates of the point with rectangular √ √ coordinates ( 2, −2, 3).
  17. 17. Examples Example Find the spherical coordinates of the point with rectangular √ √ coordinates ( 2, −2, 3). Answer 1 1 3, 2π − arccos √ , arccos √ 3 3
  18. 18. Examples Example Find the spherical coordinates of the point with rectangular √ √ coordinates ( 2, −2, 3). Answer 1 1 3, 2π − arccos √ , arccos √ 3 3 Example Find the rectangular coordinates of the point with spherical coordinates (2, π/6, 2π/3).
  19. 19. Examples Example Find the spherical coordinates of the point with rectangular √ √ coordinates ( 2, −2, 3). Answer 1 1 3, 2π − arccos √ , arccos √ 3 3 Example Find the rectangular coordinates of the point with spherical coordinates (2, π/6, 2π/3). Answer √ √ √ √ 3 3 3 1 −1 3 3 2· · ,2 · · ,2 · = , , −1 2 2 2 2 2 2 2
  20. 20. Worksheet #9–#10

×