Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.

Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.

Like this presentation? Why not share!

- Lesson 4: Lines and Planes (slides ... by Matthew Leingang 2004 views
- Lesson 25: Areas and Distances; The... by Matthew Leingang 840 views
- Lesson 3: The Concept of Limit by Matthew Leingang 3371 views
- Worksheet: Three Simple Proposition... by Matthew Leingang 2595 views
- Lesson 13: Linear Approximation by Matthew Leingang 6391 views
- Lesson 23: Antiderivatives by Matthew Leingang 2419 views

1,032 views

Published on

No Downloads

Total views

1,032

On SlideShare

0

From Embeds

0

Number of Embeds

5

Shares

0

Downloads

56

Comments

0

Likes

1

No embeds

No notes for slide

- 1. Section 5.2 The Definite Integral V63.0121.006/016, Calculus I New York University April 15, 2010 Announcements April 16: Quiz 4 on §§4.1–4.4 April 29: Movie Day!! April 30: Quiz 5 on §§5.1–5.4 Monday, May 10, 12:00noon (not 10:00am as previously announced) Final Exam . . . . . .
- 2. Announcements April 16: Quiz 4 on §§4.1–4.4 April 29: Movie Day!! April 30: Quiz 5 on §§5.1–5.4 Monday, May 10, 12:00noon (not 10:00am as previously announced) Final Exam . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 2 / 28
- 3. Objectives Compute the definite integral using a limit of Riemann sums Estimate the definite integral using a Riemann sum (e.g., Midpoint Rule) Reason with the definite integral using its elementary properties. . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 3 / 28
- 4. Outline Recall The definite integral as a limit Estimating the Definite Integral Properties of the integral Comparison Properties of the Integral . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 4 / 28
- 5. Cavalieri's method in general Let f be a positive function defined on the interval [a, b]. We want to find the area between x = a, x = b, y = 0, and y = f(x). For each positive integer n, divide up the interval into n pieces. Then b−a ∆x = . For each i between 1 and n, let xi be the ith step between n a and b. So x0 = a b−a x1 = x0 + ∆x = a + n b−a x2 = x1 + ∆x = a + 2 · ... n b−a xi = a + i · ... n b−a . . . . . x . xn = a + n · =b . 0 . 1 . . . . i . . .xn−1. n x x x x n . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 5 / 28
- 6. Forming Riemann sums We have many choices of representative points to approximate the area in each subinterval. left endpoints… ∑ n Ln = f(xi−1 )∆x i=1 . . . . . . . x . . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 6 / 28
- 7. Forming Riemann sums We have many choices of representative points to approximate the area in each subinterval. right endpoints… ∑ n Rn = f(xi )∆x i=1 . . . . . . . x . . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 6 / 28
- 8. Forming Riemann sums We have many choices of representative points to approximate the area in each subinterval. midpoints… ∑ ( xi−1 + xi ) n Mn = f ∆x 2 i=1 . . . . . . . x . . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 6 / 28
- 9. Forming Riemann sums We have many choices of representative points to approximate the area in each subinterval. the minimum value on the interval… . . . . . . . x . . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 6 / 28
- 10. Forming Riemann sums We have many choices of representative points to approximate the area in each subinterval. the maximum value on the interval… . . . . . . . x . . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 6 / 28
- 11. Forming Riemann sums We have many choices of representative points to approximate the area in each subinterval. …even random points! . . . . . . . x . . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 6 / 28
- 12. Forming Riemann sums We have many choices of representative points to approximate the area in each subinterval. …even random points! . . . . . . . . x In general, choose ci to be a point in the ith interval [xi−1 , xi ]. Form the Riemann sum ∑ n Sn = f(c1 )∆x + f(c2 )∆x + · · · + f(cn )∆x = f(ci )∆x i=1 . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 6 / 28
- 13. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no matter what choice of ci we make. . x . . . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 14. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no matter what choice of ci we make. . x . . . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 15. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 1 = 3.0 L or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. l . .eft endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 16. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 2 = 5.25 L or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. l . .eft endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 17. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 3 = 6.0 L or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. l . .eft endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 18. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 4 = 6.375 L or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. l . .eft endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 19. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 5 = 6.59988 L or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. l . .eft endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 20. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 6 = 6.75 L or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. l . .eft endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 21. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 7 = 6.85692 L or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. l . .eft endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 22. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 8 = 6.9375 L or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. l . .eft endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 23. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 9 = 6.99985 L or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. l . .eft endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 24. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 10 = 7.04958 L or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. l . .eft endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 25. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 11 = 7.09064 L or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. l . .eft endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 26. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 12 = 7.125 L or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. l . .eft endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 27. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 13 = 7.15332 L or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. l . .eft endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 28. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 14 = 7.17819 L or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. l . .eft endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 29. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 15 = 7.19977 L or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. l . .eft endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 30. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 16 = 7.21875 L or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. l . .eft endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 31. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 17 = 7.23508 L or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. l . .eft endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 32. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 18 = 7.24927 L or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. l . .eft endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 33. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 19 = 7.26228 L or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. l . .eft endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 34. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 20 = 7.27443 L or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. l . .eft endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 35. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 21 = 7.28532 L or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. l . .eft endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 36. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 22 = 7.29448 L or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. l . .eft endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 37. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 23 = 7.30406 L or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. l . .eft endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 38. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 24 = 7.3125 L or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. l . .eft endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 39. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 25 = 7.31944 L or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. l . .eft endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 40. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 26 = 7.32559 L or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. l . .eft endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 41. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 27 = 7.33199 L or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. l . .eft endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 42. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 28 = 7.33798 L or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. l . .eft endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 43. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 29 = 7.34372 L or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. l . .eft endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 44. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 30 = 7.34882 L or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. l . .eft endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 45. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 1 = 12.0 R or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. r . . ight endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 46. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 2 = 9.75 R or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. r . . ight endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 47. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 3 = 9.0 R or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. r . . ight endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 48. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 4 = 8.625 R or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. r . . ight endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 49. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 5 = 8.39969 R or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. r . . ight endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 50. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 6 = 8.25 R or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. r . . ight endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 51. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 7 = 8.14236 R or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. r . . ight endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 52. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 8 = 8.0625 R or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. r . . ight endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 53. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 9 = 7.99974 R or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. r . . ight endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 54. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 10 = 7.94933 R or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. r . . ight endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 55. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 11 = 7.90868 R or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. r . . ight endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 56. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 12 = 7.875 R or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. r . . ight endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 57. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 13 = 7.84541 R or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. r . . ight endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 58. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 14 = 7.8209 R or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. r . . ight endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 59. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 15 = 7.7997 R or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. r . . ight endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 60. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 16 = 7.78125 R or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. r . . ight endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 61. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 17 = 7.76443 R or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. r . . ight endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 62. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 18 = 7.74907 R or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. r . . ight endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 63. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 19 = 7.73572 R or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. r . . ight endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 64. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 20 = 7.7243 R or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. r . . ight endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 65. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 21 = 7.7138 R or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. r . . ight endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 66. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 22 = 7.70335 R or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. r . . ight endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 67. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 23 = 7.69531 R or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. r . . ight endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 68. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 24 = 7.6875 R or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. r . . ight endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 69. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 25 = 7.67934 R or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. r . . ight endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 70. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 26 = 7.6715 R or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. r . . ight endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 71. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 27 = 7.66508 R or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. r . . ight endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 72. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 28 = 7.6592 R or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. r . . ight endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 73. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 29 = 7.65388 R or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. r . . ight endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 74. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 30 = 7.64864 R or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. r . . ight endpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 75. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 1 = 7.5 M or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. m . . idpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 76. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 2 = 7.5 M or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. m . . idpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 77. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 3 = 7.5 M or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. m . . idpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 78. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 4 = 7.5 M or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. m . . idpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 79. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 5 = 7.4998 M or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. m . . idpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 80. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 6 = 7.5 M or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. m . . idpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 81. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 7 = 7.4996 M or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. m . . idpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 82. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 8 = 7.5 M or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. m . . idpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 83. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 9 = 7.49977 M or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. m . . idpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 84. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 10 = 7.49947 M or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. m . . idpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 85. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 11 = 7.49966 M or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. m . . idpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 86. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 12 = 7.5 M or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. m . . idpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 87. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 13 = 7.49937 M or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. m . . idpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 88. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 14 = 7.49954 M or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. m . . idpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 89. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 15 = 7.49968 M or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. m . . idpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28
- 90. Theorem of the (previous) Day Theorem If f is a continuous function on [a, b] . . 16 = 7.49988 M or has finitely many jump discontinuities, then { n } ∑ lim Sn = lim f(ci )∆x n→∞ n→∞ i=1 exists and is the same value no . x . matter what choice of ci we make. m . . idpoints . . . . . . V63.0121.006/016, Calculus I (NYU) Section 5.2 The Definite Integral April 15, 2010 7 / 28

No public clipboards found for this slide

Be the first to comment