SlideShare a Scribd company logo
1 of 57
Download to read offline
Section	4.4
                Curve	Sketching	II

                 V63.0121, Calculus	I



                    April	1, 2009



Announcements



                                        .   .   .   .   .   .
Graphing	Checklist


   To	graph	a	function f, follow	this	plan:
    0. Find	when f is	positive, negative, zero, not	defined.
    1. Find f′ and	form	its	sign	chart. Conclude	information	about
       increasing/decreasing	and	local	max/min.
    2. Find f′′ and	form	its	sign	chart. Conclude	concave
       up/concave	down	and	inflection.
    3. Put	together	a	big	chart	to	assemble	monotonicity	and
       concavity	data
    4. Graph!




                                               .   .    .     .   .   .
Outline




  More	Examples
    Points	of	nondifferentiability
    Horizontal	asymptotes
    Vertical	asymptotes
    Trigonometric	and	polynomial	together




                                            .   .   .   .   .   .
Example
                   √
                       |x|
Graph f(x) = x +




                             .   .   .   .   .   .
Example
                   √
                       |x|
Graph f(x) = x +

    This	function	looks	strange	because	of	the	absolute	value.
    But	whenever	we	become	nervous, we	can	just	take	cases.
    First, look	at f by	itself. We	can	tell	that f(0) = 0 and	that
    f(x) > 0 if x is	positive. Are	there	negative	numbers	which
    are	zeroes	for f? Yes, if x = −1 then
         √               √
    x + |x| = −1 + 1 = 0. No	other	zeros	exist.




                                              .    .   .    .    .   .
Asymptotic	behavior


      Asymptotically, it’s	clear	that lim f(x) = ∞, because	both
                                    x→∞
      terms	tend	to ∞.
      What	about x → −∞? This	is	now	indeterminate	of	the	form
      −∞ + ∞. To	resolve	it, first	let y = −x to	make	it	look	more
      familiar:
                (  √)                     √           √
           lim x + −x = lim (−y + y) = lim ( y − y)
                              y→∞                y→∞
          x→−∞

      Now	multiply	by	the	conjugate:
                             √
                                          y − y2
                               y+y
                   √
              lim ( y − y) · √                   = −∞
                                    = lim √
                               y + y y→∞ y + y
             y→∞




                                             .    .    .   .   .    .
The	derivative

   First, assume x > 0, so

                               d(   √)     1
                    f′ (x) =      x+ x =1+ √
                               dx         2x

   This	is	always	positive. Also, we	see	that lim f′ (x) = ∞ and
                                              x→0+
         ′
   lim f (x) = 1. If x is	negative, we	have
   x→∞

                          d(     √)           1
                  f′ (x) =    x + −x = 1 − √
                          dx               2 −x
                                  √
   Again, this	looks	weird	because −x appears	to	be	a	negative
   number. But	since x < 0, −x > 0.



                                                .    .   .   .     .   .
Monotonicity


  We	see	that f′ (x) = 0 when
                √
           1          1         1          1
       1= √   =⇒ −x =   =⇒ −x =   =⇒ x = −
                      2         4          4
         2 −x

  Notice	also	that lim f′ (x) = −∞ and lim f′ (x) = 1. We	can’t
                                        x→−∞
                  x→0−
  make	a	multi-factor	sign	chart	because	of	the	absolute	value, but
  the	conclusion	is	this:

                                                               .′ (x)
                                                               f
                            0 −∓ .
                            .. . . ∞
                     .                        .
                     +                        +
                     ↗     −4 ↘ 0             ↗
                           . .1 . .
                     .                        .                f
                                                               .(x)
                       .   max cusp




                                               .   .   .   .            .   .
Concavity
  If x > 0, then
                                (               )
                           d           1               1
                   ′′
                                    1 + x−1/2       = − x−3/2
                   f (x) =
                           dx          2               4

  This	is	negative	whenever x < 0. If x < 0, then
                        (                )
                     d       1                  1
              ′′                   −1/2
                                           = − (−x)−3/2
                          1 − (−x)
             f (x) =
                     dx      2                  4

  which	is	also	always	negative	for	negative x. Another	way	to
                           1
  write	this	is f′′ (x) = − |x|−3/2 . Here	is	the	sign	chart:
                           4

                                                                      f′′
                                                                    . . (x)
                        −
                        .−             −.
                                       .∞             −
                                                      .−
                                                                    .
                        .                             .
                        ⌢                             ⌢
                                        0
                                        .                             f
                                                                      .(x)

                                                       .   .    .   .     .   .
Synthesis


   Now	we	can	put	these	things	together.


                                                           .′ (x)
                                                           f
                          0 −∓ .
                          .. . . ∞
                   .                       .
                   +                       +
                   ↗     −4 ↘ 0            ↗
                         . 1. .
                   .                       .               m
                                                           .′′ onotonicity
                                                           f
                                                           . (x)
                   −
                   .−         −. .
                              .−∞
                               −           −
                                           .−
                   .          ..           .
                   ⌢          ⌢0           ⌢               c
                                                           . oncavity
                          .1                               f
                                                           .(x)
        0
        ..                       0
                                 ..
                           4.
                    .        1. .          .
        −                        0
        .1                                                 s
                                                           . hape
                         −
                         . .4
   .                 .
       zero              max cusp




                                               .   .   .     .      .   .
Graph


                                  f
                                  .(x)



                        .−1, 1)
                        ( 44
        . −1, 0)           .
        (
            .                      .                         x
                                                             .
                                       . 0, 0)
                                       (


                          .1                                 f
                                                             .(x)
          0
          ..                    0
                                ..
                           4.
                   .         1. .                .
          −                     0
          .1                                                 s
                                                             . hape
                         −
                         . .4
   .                .
         zero            max cusp




                                                 .   .   .   .      .   .
Example
                    2
Graph f(x) = xe−x




                        .   .   .   .   .   .
Example
                    2
Graph f(x) = xe−x
Before	taking	derivatives, we	notice	that f is	odd, that f(0) = 0,
and lim f(x) = 0
    x→∞




                                              .    .    .   .    .   .
Monotonicity
  Now
                                           (       )
                            2      2                    2
            f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x
                     (     √ )(      √)      2
                   = 1 − 2x 1 + 2x e−x

                2
  The	factor e−x is	always	positive	so	it	doesn’t	figure	into	the	sign
  of f′ (x). So	our	sign	chart	looks	like	this:

                                                                         √
                                                     −
          .                         ..               .
                                           0
                                           .
          +                         +
                                         √.                      .−
                                                                 1           2x
                                         . 1/2
                                                                         √
          −
          .                         .                .
                         0
                         ..         +                +
                         √                                       1
                                                                 .+          2x
                     −
                     .        1/2
                                                                 ′
                                                                 f
                                                                 . (x)
          −                                          −
          .                .                         .
                         0
                         ..                0
                                           .
                           +
                                         √.
                         √
          ↘                ↗                         ↘
          .          − 1/2 . .                       .           f
                                                                 .(x)
                    ..                   . 1/2
                                          max
                       min

                                                 .       .   .       .       .    .
Concavity
  Now	we	look	at f′′ (x):
                                               (        )
                       2               2                     2
     f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x
                             2
          = 2x(2x2 − 3)e−x

          −            −
          .            .          .               .
                             0
                             ..   +               +
                                                              .x
                                                              2
                             0
                             .
                                                              √     √
          −            −          −
          .            .          .               .
                                        0
                                        .         +
                                      √.                      . 2x − 3
                                      . 3/2
                                                              √     √
          −
          .            .          .               .
                 0
                 ..    +          +               +
                 √                                            . 2x + 3
            − 3/2
            .
                                                              .′′ (x)
                                                              f
         −
         .−                       −
                                  . − ..
              .. . +                          .+
              0+             0
                             ..          0    +
              √                    ⌢ √3
         .        .                .          .
         ⌢        ⌣                           ⌣
                             0
                             .                                f
                                                              .(x)
            − 3/2 .
           ..                        . . /2
              IP             IP         IP


                                              .       .   .      .      .   .
Synthesis



                                                                     .′ (x)
                                                                     f
      −            −0 +           +.−                        −
      .            . .. .       . . √. .                     .
                                      0
                      √
      ↘            ↘ 1/2 .
                         ↗        ↗      ↘                   ↘
      .            ..             . . 1/2.                   .       m
                                                                     . onotonic
                    −
                                                                     .′′ (x)
                                                                     f
      −
      .−                  + 0−
                          . + .. . −       −0
                                           . − ..
                .. . +                                   .+
                0+                                       +
                √.                          . √3
      .                    ⌣. .
                           .                             .
      ⌢             ⌣         0⌢            ⌢            ⌣           c
                                                                     . oncavity
              − 3/2
              .                               . /2

               √                             √
             − 2e3 . √1                 .√1 . 2e3
                   3                            3
                      − 2e
             .                                                       f
                                                                     .(x)
                                0
                                ..        2e
                .       .                  . √.
               √. √                    √.
       .             − 1/2 .    ..                           .
                                0                                    s
                                                                     . hape
             −
            .. ..                      . 1/2 . 3/2
                  3/2
                          .        .       .
                                        max IP
               IP min          IP



                                              .      .   .       .    .        .
Graph

                                 f
                                 .(x)

                                       (√        )(
                                                           √)
                                                    √
                                       . 1/2, √1            3
                                               2e .   3/2,
                                            .              2e3
                                                 .
                                   .                                     x
                                                                         .
                                       . 0, 0)
                                       (
                        .
   (          √)
      √                       .
   . − 3/2, − 2e3 ( √               )
                 3
                     . − 1/2, − √1
                                 2e
                      √                       √
                   − 2e3 √1             .√1 . 2e3
                          3                      3
                            −
                            . 2e
                   .                                                     f
                                                                         .(x)
                                     0
                                     ..   2e
                        .     .         √. √.
                       √√
             .     − ..
                   . . 3/2 1/2 . . . . . .1/2.. 3/2          .
                                     0                                   s
                                                                         . hape
                           −.
               .                        max IP
                       IP min       IP
                                                 .   .   .       .   .   .
Example
               1  1
Graph f(x) =     +2
               x  x




                      .   .   .   .   .   .
Step	0
   Find	when f is	positive, negative, zero, not	defined.




                                                .   .     .   .   .   .
Step	0
   Find	when f is	positive, negative, zero, not	defined. We	need	to
   factor f:
                                           x+1
                                1     1
                         f(x) = + 2 =            .
                                             x2
                                x    x
   This	means f is 0 at −1 and	has	trouble	at 0. In	fact,
                               x+1
                                   = ∞,
                            lim
                            x→0 x2

   so x = 0 is	a	vertical	asymptote	of	the	graph.




                                                .   .   .   .   .    .
Step	0
   Find	when f is	positive, negative, zero, not	defined. We	need	to
   factor f:
                                           x+1
                                1     1
                         f(x) = + 2 =            .
                                             x2
                                x    x
   This	means f is 0 at −1 and	has	trouble	at 0. In	fact,
                              x+1
                                  = ∞,
                           lim
                           x→0 x2

   so x = 0 is	a	vertical	asymptote	of	the	graph. We	can	make	a	sign
   chart	as	follows:
                 −
                 .                          .
                     0
                     ..                     +
                                 .                  x
                                                    . +1
                     −
                     .1
                 .                          .
                               0
                               ..
                 +                          +
                                                    .2
                                                    x
                               0
                               .
                 −
                 .   .. .                   .
                               ∞
                     0+        ..           +
                                                    f
                                                    .(x)
                     −         0
                               .
                     .1
                                                .   .      .   .   .   .
For	horizontal	asymptotes, notice	that

                               x+1
                         lim       = 0,
                                x2
                         x→∞

so y = 0 is	a	horizontal	asymptote	of	the	graph. The	same	is	true
at −∞.




                                            .   .    .   .    .     .
Monotonicity




               .   .   .   .   .   .
Monotonicity

  We	have
                                           x+2
                               1     2
                    f′ (x) = −     − 3 =− 3 .
                                 2
                               x    x       x
  The	critical	points	are x = −2 and x = 0. We	have	the	following
  sign	chart:

                                          −
              .                           .
                   0
                   ..
              +                       .           −
                                                  . (x + 2)
                  −
                  .2
              −
              .                           .
                                     0
                                     ..   +
                                                  .3
                                                  x
                                     0
                                     .




                                              .        .   .   .   .   .
Monotonicity

  We	have
                                           x+2
                               1     2
                    f′ (x) = −     − 3 =− 3 .
                                 2
                               x    x       x
  The	critical	points	are x = −2 and x = 0. We	have	the	following
  sign	chart:

                                         −
              .                          .
                   0
                   ..
              +                      .           −
                                                 . (x + 2)
                  −
                  .2
              −
              .                          .
                                    0
                                    ..   +
                                                 .3
                                                 x
                                    0
                                    .
                                                 .′ (x)
                                                 f
              −                          −
              .             .            .
                                    ∞
                   0
                   ..               ..
                            +
                  −
                  .2                0
                                    .            f
                                                 .(x)




                                             .        .   .   .   .   .
Monotonicity

  We	have
                                           x+2
                               1     2
                    f′ (x) = −     − 3 =− 3 .
                                 2
                               x    x       x
  The	critical	points	are x = −2 and x = 0. We	have	the	following
  sign	chart:

                                         −
              .                          .
                   0
                   ..
              +                      .           −
                                                 . (x + 2)
                  −
                  .2
              −
              .                          .
                                    0
                                    ..   +
                                                 .3
                                                 x
                                    0
                                    .
                                                 .′ (x)
                                                 f
              − ..                       −
              .             .            .
                                    ∞
                 0                  ..
                            +
                −
              ↘ .2                  0
                                    .
              .                                  f
                                                 .(x)




                                             .        .   .   .   .   .
Monotonicity

  We	have
                                           x+2
                               1     2
                    f′ (x) = −     − 3 =− 3 .
                                 2
                               x    x       x
  The	critical	points	are x = −2 and x = 0. We	have	the	following
  sign	chart:

                                         −
              .                          .
                   0
                   ..
              +                      .           −
                                                 . (x + 2)
                  −
                  .2
              −
              .                          .
                                    0
                                    ..   +
                                                 .3
                                                 x
                                    0
                                    .
                                                 .′ (x)
                                                 f
              − ..                       −
              .             .            .
                                    ∞
                 0                  ..
                            +
                −
              ↘ .2          ↗       0
                                    .
              .             .                    f
                                                 .(x)




                                             .        .   .   .   .   .
Monotonicity

  We	have
                                           x+2
                               1     2
                    f′ (x) = −     − 3 =− 3 .
                                 2
                               x    x       x
  The	critical	points	are x = −2 and x = 0. We	have	the	following
  sign	chart:

                                         −
              .                          .
                   0
                   ..
              +                      .           −
                                                 . (x + 2)
                  −
                  .2
              −
              .                     .. .
                                    0+
                                                 .3
                                                 x
                                    0
                                    .
                                                 .′ (x)
                                                 f
              − ..                  ∞−
              .             .       .. .
                 0          +
                −
              ↘ .2          ↗       0↘
                                    ..
              .             .                    f
                                                 .(x)




                                             .        .   .   .   .   .
Monotonicity

  We	have
                                           x+2
                               1     2
                    f′ (x) = −     − 3 =− 3 .
                                 2
                               x    x       x
  The	critical	points	are x = −2 and x = 0. We	have	the	following
  sign	chart:

                                         −
              .                          .
                   0
                   ..
              +                      .           −
                                                 . (x + 2)
                  −
                  .2
              −
              .                     .. .
                                    0+
                                                 .3
                                                 x
                                    0
                                    .
                                                 .′ (x)
                                                 f
              − ..                  ∞−
              .             .       .. .
                  0         +
                 −
              ↘ .2          ↗       0↘
                                    ..
              .             .                    f
                                                 .(x)
                m
                . in



                                             .        .   .   .   .   .
Monotonicity

  We	have
                                           x+2
                               1     2
                    f′ (x) = −     − 3 =− 3 .
                                 2
                               x    x       x
  The	critical	points	are x = −2 and x = 0. We	have	the	following
  sign	chart:

                                         −
              .                          .
                   0
                   ..
              +                      .           −
                                                 . (x + 2)
                  −
                  .2
              −
              .                      .. .
                                     0+
                                                 .3
                                                 x
                                     0
                                     .
                                                 .′ (x)
                                                 f
              − ..                  ∞−
              .             .       .. .
                  0         +
                 −
              ↘ .2          ↗        0↘
                                     ..
              .             .                    f
                                                 .(x)
                m
                . in                V
                                    .A



                                             .        .   .   .   .   .
Concavity




            .   .   .   .   .   .
Concavity

  We	have
                                  2    6   2(x + 3)
                      f′′ (x) =      +   =          .
                                  x 3 x4      x4
  The	critical	points	of f′ are −3 and 0. Sign	chart:

            −
            .                                           .
                 0
                 ..                                     +
                                                .               . x + 3)
                                                                (
                −
                .3
            .                                           .
                                               0
                                               ..
            +                                           +
                                                                .4
                                                                x
                                               0
                                               .
                                                                .′ (x)
                                                                f
                                               ∞
                 0
                 ..                            ..
                −
                .3                             0
                                               .                f
                                                                .(x)




                                                    .       .    .       .   .   .
Concavity

  We	have
                                  2    6   2(x + 3)
                      f′′ (x) =      +   =          .
                                  x 3 x4      x4
  The	critical	points	of f′ are −3 and 0. Sign	chart:

            −
            .                                           .
                 0
                 ..                                     +
                                                .               . x + 3)
                                                                (
                −
                .3
            .                                           .
                                               0
                                               ..
            +                                           +
                                                                .4
                                                                x
                                               0
                                               .
                                                                .′ (x)
                                                                f
          −
          . − ..                               ∞
               0                               ..
              −
              .3                               0
                                               .                f
                                                                .(x)




                                                    .       .    .       .   .   .
Concavity

  We	have
                                  2    6   2(x + 3)
                      f′′ (x) =      +   =          .
                                  x 3 x4      x4
  The	critical	points	of f′ are −3 and 0. Sign	chart:

            −
            .                                           .
                 0
                 ..                                     +
                                                .               . x + 3)
                                                                (
                −
                .3
            .                                           .
                                               0
                                               ..
            +                                           +
                                                                .4
                                                                x
                                               0
                                               .
                                                                .′ (x)
                                                                f
          −
          . − ..                  .+           ∞
               0                               ..
                                  +
              −
              .3                               0
                                               .                f
                                                                .(x)




                                                    .       .    .       .   .   .
Concavity

  We	have
                                  2    6   2(x + 3)
                      f′′ (x) =      +   =          .
                                  x 3 x4      x4
  The	critical	points	of f′ are −3 and 0. Sign	chart:

            −
            .                                           .
                 0
                 ..                                     +
                                                .               . x + 3)
                                                                (
                −
                .3
            .                                  .. .
                                               0+
            +
                                                                .4
                                                                x
                                               0
                                               .
                                                                .′ (x)
                                                                f
          −
          . − ..                  .+           .. . +
                                               ∞+
               0                  +
              −
              .3                               0
                                               .                f
                                                                .(x)




                                                    .       .    .       .   .   .
Concavity

  We	have
                                  2    6   2(x + 3)
                      f′′ (x) =      +   =          .
                                  x 3 x4      x4
  The	critical	points	of f′ are −3 and 0. Sign	chart:

            −
            .                                           .
                 0
                 ..                                     +
                                                .               . x + 3)
                                                                (
                −
                .3
            .                                  .. .
                                               0+
            +
                                                                .4
                                                                x
                                               0
                                               .
                                                                .′ (x)
                                                                f
          −
          . − ..                  .+           .. . +
                                               ∞+
              0                   +
           .
           ⌢ .3
              −                                0
                                               .                f
                                                                .(x)




                                                    .       .    .       .   .   .
Concavity

  We	have
                                  2    6   2(x + 3)
                      f′′ (x) =      +   =          .
                                  x 3 x4      x4
  The	critical	points	of f′ are −3 and 0. Sign	chart:

            −
            .                                           .
                 0
                 ..                                     +
                                                .               . x + 3)
                                                                (
                −
                .3
            .                                  .. .
                                               0+
            +
                                                                .4
                                                                x
                                               0
                                               .
                                                                .′ (x)
                                                                f
          −
          . − ..                  .+           .. . +
                                               ∞+
              0                   +
           .                      .
           ⌢ .3                   ⌣
              −                                0
                                               .                f
                                                                .(x)




                                                    .       .    .       .   .   .
Concavity

  We	have
                                  2    6   2(x + 3)
                      f′′ (x) =      +   =          .
                                  x 3 x4      x4
  The	critical	points	of f′ are −3 and 0. Sign	chart:

            −
            .                                           .
                 0
                 ..                                     +
                                                .               . x + 3)
                                                                (
                −
                .3
            .                                  .. .
                                               0+
            +
                                                                .4
                                                                x
                                               0
                                               .
                                                                .′ (x)
                                                                f
          −
          . − ..                  .+           .. . +
                                               ∞+
              0                   +
           .                      .            ..
           ⌢ .3                   ⌣            0⌣
              −                                                 f
                                                                .(x)




                                                    .       .    .       .   .   .
Concavity

  We	have
                                  2    6   2(x + 3)
                      f′′ (x) =      +   =          .
                                  x 3 x4      x4
  The	critical	points	of f′ are −3 and 0. Sign	chart:

            −
            .                                           .
                 0
                 ..                                     +
                                                .               . x + 3)
                                                                (
                −
                .3
            .                                  .. .
                                               0+
            +
                                                                .4
                                                                x
                                               0
                                               .
                                                                .′ (x)
                                                                f
          −
          . − ..                  .+           .. . +
                                               ∞+
               0                  +
           .                      .            ..
           ⌢ .3                   ⌣            0⌣
              −                                                 f
                                                                .(x)
              I
              .P




                                                    .       .    .       .   .   .
Concavity

  We	have
                                  2    6   2(x + 3)
                      f′′ (x) =      +   =          .
                                  x 3 x4      x4
  The	critical	points	of f′ are −3 and 0. Sign	chart:

            −
            .                                           .
                 0
                 ..                                     +
                                                .               . x + 3)
                                                                (
                −
                .3
            .                                   .. .
                                                0+
            +
                                                                .4
                                                                x
                                                0
                                                .
                                                                .′ (x)
                                                                f
          −
          . − ..                  .+           .. . +
                                               ∞+
               0                  +
           .                      .             ..
           ⌢ .3                   ⌣             0⌣
              −                                                 f
                                                                .(x)
              I
              .P                               V
                                               .A




                                                    .       .    .       .   .   .
Synthesis
                                       .

                                                   .′
                 − ..                 ∞−
                 .             .      .. .
                   0                               f
                               +
                   −
                 ↘ .2          ↗      0↘
                                      ..
                 .             .                   m
                                                   . onotonicity
                                                   .′′
        −
        . − ..                        ∞−
                                      .. . −
                          .+
            0                                      f
                          +
         .                .           ..
         ⌢ .3             ⌣           0⌣
            −                                      c
                                                   . oncavity

         −        −
         . 2/9    . 1/4               ∞
     0
     .                         0
                               ..               0f
                                                ..
                                      ..
            .        .
                                               ∞s
                                               . . hape	of f
    −
    .∞ . .3
       −−                      .1 .        .
                   −           −+
                   .2                 0
                                      .    +




                                           .   .     .    .    .   .
Synthesis
                                       .

                                                   .′
                 − ..                 ∞−
                 .             .      .. .
                   0                               f
                               +
                   −
                 ↘ .2          ↗      0↘
                                      ..
                 .             .                   m
                                                   . onotonicity
                                                   .′′
        −
        . − ..                        ∞−
                                      .. . −
                          .+
            0                                      f
                          +
         .                .           ..
         ⌢ .3             ⌣           0⌣
            −                                      c
                                                   . oncavity

         −        −
         . 2/9    . 1/4               ∞
     0
     .                         0
                               ..               0f
                                                ..
                                      ..
            .        .
                                               ∞s
                                               . . hape	of f
    −
    .∞ . .3
       −−                      .1 .        .
                   −           −+
                   .2                 0
                                      .    +
    H
    .A




                                           .   .     .    .    .   .
Synthesis
                                       .

                                                   .′
                 − ..                 ∞−
                 .             .      .. .
                   0                               f
                               +
                   −
                 ↘ .2          ↗      0↘
                                      ..
                 .             .                   m
                                                   . onotonicity
                                                   .′′
        −
        . − ..                        ∞−
                                      .. . −
                          .+
            0                                      f
                          +
         .                .           ..
         ⌢ .3             ⌣           0⌣
            −                                      c
                                                   . oncavity

         −        −
         . 2/9    . 1/4               ∞
     0
     .                         0
                               ..               0f
                                                ..
                                      ..
            .        .
                                               ∞s
                                               . . hape	of f
    −
    .∞ . .3
       −−                      .1 .        .
                   −           −+
                   .2                 0
                                      .    +
    .A .
    H




                                           .   .     .    .    .   .
Synthesis
                                       .

                                                   .′
                 − ..                 ∞−
                 .             .      .. .
                   0                               f
                               +
                   −
                 ↘ .2          ↗      0↘
                                      ..
                 .             .                   m
                                                   . onotonicity
                                                   .′′
        −
        . − ..                        ∞−
                                      .. . −
                          .+
            0                                      f
                          +
         .                .           ..
         ⌢ .3             ⌣           0⌣
            −                                      c
                                                   . oncavity

         −        −
         . 2/9    . 1/4               ∞
     0
     .                         0
                               ..               0f
                                                ..
                                      ..
             .       .
                                               ∞s
                                               . . hape	of f
    −
    .∞ . .3
       −−                      .1 .        .
                   −           −+
                   .2                 0
                                      .    +
    .A .   I
           .P
    H




                                           .   .     .    .    .   .
Synthesis
                                     .

                                                 .′
                 − ..               ∞−
                 .           .      .. .
                   0                             f
                             +
                   −
                 ↘ .2        ↗      0↘
                                    ..
                 .           .                   m
                                                 . onotonicity
                                                 .′′
        −
        . − ..                      ∞−
                                    .. . −
                        .+
            0                                    f
                        +
         .              .           ..
         ⌢ .3           ⌣           0⌣
            −                                    c
                                                 . oncavity

         −      −
         . 2/9  . 1/4               ∞
     0
     .                       0
                             ..               0f
                                              ..
                                    ..
             .     .
                                             ∞s
                                             . . hape	of f
    −
    .∞ . .3
       −−                    .1 .        .
                 −           −+
                 .2                 0
                                    .    +
    .A .   .P .
           I
    H




                                         .   .     .    .    .   .
Synthesis
                                     .

                                                 .′
                 − ..               ∞−
                 .           .      .. .
                   0                             f
                             +
                   −
                 ↘ .2        ↗      0↘
                                    ..
                 .           .                   m
                                                 . onotonicity
                                                 .′′
        −
        . − ..                      ∞−
                                    .. . −
                        .+
            0                                    f
                        +
         .              .           ..
         ⌢ .3           ⌣           0⌣
            −                                    c
                                                 . oncavity

         −      −
         . 2/9  . 1/4               ∞
     0
     .                       0
                             ..               0f
                                              ..
                                    ..
             .     .
                                             ∞s
                                             . . hape	of f
    −
    .∞ . .3
       −−                    .1 .        .
                 −           −+
                 .2                 0
                                    .    +
    .A .   .P . . in
           I
    H           m




                                         .   .     .    .    .   .
Synthesis
                                     .

                                                 .′
                 − ..               ∞−
                 .           .      .. .
                   0                             f
                             +
                   −
                 ↘ .2        ↗      0↘
                                    ..
                 .           .                   m
                                                 . onotonicity
                                                 .′′
        −
        . − ..                      ∞−
                                    .. . −
                        .+
            0                                    f
                        +
         .              .           ..
         ⌢ .3           ⌣           0⌣
            −                                    c
                                                 . oncavity

         −      −
         . 2/9  . 1/4               ∞
     0
     .                       0
                             ..               0f
                                              ..
                                    ..
             .     .
                                             ∞s
                                             . . hape	of f
    −
    .∞ . .3
       −−                    .1 .        .
                 −           −+
                 .2                 0
                                    .    +
    .A .   .P . . in .
           I
    H           m




                                         .   .     .    .    .   .
Synthesis
                                     .

                                                 .′
                 − ..               ∞−
                 .           .      .. .
                   0                             f
                             +
                   −
                 ↘ .2        ↗      0↘
                                    ..
                 .           .                   m
                                                 . onotonicity
                                                 .′′
        −
        . − ..                      ∞−
                                    .. . −
                        .+
            0                                    f
                        +
         .              .           ..
         ⌢ .3           ⌣           0⌣
            −                                    c
                                                 . oncavity

         −      −
         . 2/9  . 1/4               ∞
     0
     .                       0
                             ..               0f
                                              ..
                                    ..
             .     .
                                             ∞s
                                             . . hape	of f
    −
    .∞ . .3
       −−                    .1 .        .
                 −           −+
                 .2                 0
                                    .    +
    .A .   .P . . in .       0
                             .
           I
    H           m




                                         .   .     .    .    .   .
Synthesis
                                     .

                                                 .′
                 − ..               ∞−
                 .           .      .. .
                   0                             f
                             +
                   −
                 ↘ .2        ↗      0↘
                                    ..
                 .           .                   m
                                                 . onotonicity
                                                 .′′
        −
        . − ..                      ∞−
                                    .. . −
                        .+
            0                                    f
                        +
         .              .           ..
         ⌢ .3           ⌣           0⌣
            −                                    c
                                                 . oncavity

         −      −
         . 2/9  . 1/4               ∞
     0
     .                       0
                             ..               0f
                                              ..
                                    ..
             .     .
                                             ∞s
                                             . . hape	of f
    −
    .∞ . .3
       −−                    .1 .        .
                 −           −+
                 .2                 0
                                    .    +
    .A .   .P . . in .       0.
                             .
           I
    H           m




                                         .   .     .    .    .   .
Synthesis
                                  .

                                               .′
                 − ..             ∞−
                 .           .    .. .
                   0                           f
                             +
                   −
                 ↘ .2        ↗    0↘
                                  ..
                 .           .                 m
                                               . onotonicity
                                               .′′
        −
        . − ..                    ∞−
                                  .. . −
                        .+
            0                                  f
                        +
         .              .         ..
         ⌢ .3           ⌣         0⌣
            −                                  c
                                               . oncavity

         −      −
         . 2/9  . 1/4             ∞
     0
     .                       0
                             ..             0f
                                            ..
                                  ..
             .     .
                                           ∞s
                                           . . hape	of f
    −
    .∞ . .3
       −−                    .1 .  0.
                 −           −+.
                 .2                  +
    .A .   .P . . in .       0 . .A
                             .
           I
    H           m                 V




                                      .    .     .    .    .   .
Synthesis
                                  .

                                               .′
                 − ..             ∞−
                 .           .    .. .
                   0                           f
                             +
                   −
                 ↘ .2        ↗    0↘
                                  ..
                 .           .                 m
                                               . onotonicity
                                               .′′
        −
        . − ..                    ∞−
                                  .. . −
                        .+
            0                                  f
                        +
         .              .         ..
         ⌢ .3           ⌣         0⌣
            −                                  c
                                               . oncavity

         −      −
         . 2/9  . 1/4             ∞
     0
     .                       0
                             ..             0f
                                            ..
                                  ..
             .     .
                                           ∞s
                                           . . hape	of f
    −
    .∞ . .3
       −−                    .1 .  0.
                 −           −+.
                 .2                  +
    .A .   .P . . in .       0 . .A .
                             .
           I
    H           m                 V




                                      .    .     .    .    .   .
Synthesis
                                     .

                                                 .′
                 − ..               ∞−
                 .           .      .. .
                   0                             f
                             +
                   −
                 ↘ .2        ↗      0↘
                                    ..
                 .           .                   m
                                                 . onotonicity
                                                 .′′
        −
        . − ..                      ∞−
                                    .. . −
                        .+
            0                                    f
                        +
         .              .           ..
         ⌢ .3           ⌣           0⌣
            −                                    c
                                                 . oncavity

         −      −
         . 2/9  . 1/4             ∞
     0
     .                       0
                             ..         0f
                                        ..
                                  ..
             .     .
                                       ∞s
                                       . . hape	of f
    −
    .∞ . .3
       −−                    .1 .  0.
                 −           −+.
                 .2                  +
    .A .   .P . . in .       0 . .A . . A
                             .
           I
    H           m                 V    H




                                         .   .     .    .   .    .
Graph

                                  y
                                  .




                                  .               x
                                                  .
              .    .
        . −3, −2/9) . −2, −1/4)
        (            (



                                      .   .   .       .   .   .
Problem
Graph f(x) = cos x − x




                         .   .   .   .   .   .
Problem
Graph f(x) = cos x − x



                         5




          5                  5           10



                         5



                     10




                                 .   .    .   .   .   .
Problem
Graph f(x) = x ln x2




                       .   .   .   .   .   .
Problem
Graph f(x) = x ln x2

                           6


                           4


                           2


   3         2         1       1           2           3

                           2


                           4


                           6



                                   .   .       .   .       .   .

More Related Content

What's hot

Lesson 22: Optimization II (Section 4 version)
Lesson 22: Optimization II (Section 4 version)Lesson 22: Optimization II (Section 4 version)
Lesson 22: Optimization II (Section 4 version)Matthew Leingang
 
11X1 T09 04 concavity
11X1 T09 04 concavity11X1 T09 04 concavity
11X1 T09 04 concavityNigel Simmons
 
V. Dragovic: Geometrization and Generalization of the Kowalevski top
V. Dragovic: Geometrization and Generalization of the Kowalevski topV. Dragovic: Geometrization and Generalization of the Kowalevski top
V. Dragovic: Geometrization and Generalization of the Kowalevski topSEENET-MTP
 
Lesson 24: The Definite Integral (Section 4 version)
Lesson 24: The Definite Integral (Section 4 version)Lesson 24: The Definite Integral (Section 4 version)
Lesson 24: The Definite Integral (Section 4 version)Matthew Leingang
 
Lesson 24: The Definite Integral (Section 10 version)
Lesson 24: The Definite Integral (Section 10 version)Lesson 24: The Definite Integral (Section 10 version)
Lesson 24: The Definite Integral (Section 10 version)Matthew Leingang
 
Lesson 13: Derivatives of Logarithmic and Exponential Functions
Lesson 13: Derivatives of Logarithmic and Exponential FunctionsLesson 13: Derivatives of Logarithmic and Exponential Functions
Lesson 13: Derivatives of Logarithmic and Exponential FunctionsMatthew Leingang
 
Lesson 12: Linear Independence
Lesson 12: Linear IndependenceLesson 12: Linear Independence
Lesson 12: Linear IndependenceMatthew Leingang
 
Bai giang ham so kha vi va vi phan cua ham nhieu bien
Bai giang ham so kha vi va vi phan cua ham nhieu bienBai giang ham so kha vi va vi phan cua ham nhieu bien
Bai giang ham so kha vi va vi phan cua ham nhieu bienNhan Nguyen
 
Nonsmooth Optimization
Nonsmooth OptimizationNonsmooth Optimization
Nonsmooth OptimizationSSA KPI
 
X2 T05 06 Partial Fractions
X2 T05 06 Partial FractionsX2 T05 06 Partial Fractions
X2 T05 06 Partial FractionsNigel Simmons
 
Lesson 6: Limits Involving ∞
Lesson 6: Limits Involving ∞Lesson 6: Limits Involving ∞
Lesson 6: Limits Involving ∞Matthew Leingang
 
CG OpenGL Shadows + Light + Texture -course 10
CG OpenGL Shadows + Light + Texture -course 10CG OpenGL Shadows + Light + Texture -course 10
CG OpenGL Shadows + Light + Texture -course 10fungfung Chen
 
Documents.mx eduv
Documents.mx eduvDocuments.mx eduv
Documents.mx eduvOsmar Meraz
 
Maths ch15 key
Maths ch15 keyMaths ch15 key
Maths ch15 keyGary Tsang
 
Actividad 4 calculo diferencial
Actividad 4 calculo diferencialActividad 4 calculo diferencial
Actividad 4 calculo diferencialSIGIFREDO12222
 

What's hot (20)

Lesson 22: Optimization II (Section 4 version)
Lesson 22: Optimization II (Section 4 version)Lesson 22: Optimization II (Section 4 version)
Lesson 22: Optimization II (Section 4 version)
 
11X1 T09 04 concavity
11X1 T09 04 concavity11X1 T09 04 concavity
11X1 T09 04 concavity
 
iTute Notes MM
iTute Notes MMiTute Notes MM
iTute Notes MM
 
V. Dragovic: Geometrization and Generalization of the Kowalevski top
V. Dragovic: Geometrization and Generalization of the Kowalevski topV. Dragovic: Geometrization and Generalization of the Kowalevski top
V. Dragovic: Geometrization and Generalization of the Kowalevski top
 
Lesson 24: The Definite Integral (Section 4 version)
Lesson 24: The Definite Integral (Section 4 version)Lesson 24: The Definite Integral (Section 4 version)
Lesson 24: The Definite Integral (Section 4 version)
 
Lesson 24: The Definite Integral (Section 10 version)
Lesson 24: The Definite Integral (Section 10 version)Lesson 24: The Definite Integral (Section 10 version)
Lesson 24: The Definite Integral (Section 10 version)
 
Lesson 13: Derivatives of Logarithmic and Exponential Functions
Lesson 13: Derivatives of Logarithmic and Exponential FunctionsLesson 13: Derivatives of Logarithmic and Exponential Functions
Lesson 13: Derivatives of Logarithmic and Exponential Functions
 
Lesson 12: Linear Independence
Lesson 12: Linear IndependenceLesson 12: Linear Independence
Lesson 12: Linear Independence
 
Chap 1
Chap 1Chap 1
Chap 1
 
Bai giang ham so kha vi va vi phan cua ham nhieu bien
Bai giang ham so kha vi va vi phan cua ham nhieu bienBai giang ham so kha vi va vi phan cua ham nhieu bien
Bai giang ham so kha vi va vi phan cua ham nhieu bien
 
Nonsmooth Optimization
Nonsmooth OptimizationNonsmooth Optimization
Nonsmooth Optimization
 
X2 T05 06 Partial Fractions
X2 T05 06 Partial FractionsX2 T05 06 Partial Fractions
X2 T05 06 Partial Fractions
 
Lesson 1: Functions
Lesson 1: FunctionsLesson 1: Functions
Lesson 1: Functions
 
Lesson 6: Limits Involving ∞
Lesson 6: Limits Involving ∞Lesson 6: Limits Involving ∞
Lesson 6: Limits Involving ∞
 
CG OpenGL Shadows + Light + Texture -course 10
CG OpenGL Shadows + Light + Texture -course 10CG OpenGL Shadows + Light + Texture -course 10
CG OpenGL Shadows + Light + Texture -course 10
 
Documents.mx eduv
Documents.mx eduvDocuments.mx eduv
Documents.mx eduv
 
Proj Stat
Proj StatProj Stat
Proj Stat
 
Chapter 15
Chapter 15Chapter 15
Chapter 15
 
Maths ch15 key
Maths ch15 keyMaths ch15 key
Maths ch15 key
 
Actividad 4 calculo diferencial
Actividad 4 calculo diferencialActividad 4 calculo diferencial
Actividad 4 calculo diferencial
 

Similar to Curve Sketching II: Graphing Functions

Lesson 9: Basic Differentiation Rules
Lesson 9: Basic Differentiation RulesLesson 9: Basic Differentiation Rules
Lesson 9: Basic Differentiation RulesMatthew Leingang
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange  Multipliers IILesson 28: Lagrange  Multipliers II
Lesson 28: Lagrange Multipliers IIMatthew Leingang
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers IILesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers IIguestf32826
 
Lesson 20: Derivatives and the Shapes of Curves
Lesson 20: Derivatives and the Shapes of CurvesLesson 20: Derivatives and the Shapes of Curves
Lesson 20: Derivatives and the Shapes of CurvesMatthew Leingang
 
Lesson 17: The Method of Lagrange Multipliers
Lesson 17: The Method of Lagrange MultipliersLesson 17: The Method of Lagrange Multipliers
Lesson 17: The Method of Lagrange MultipliersMatthew Leingang
 
Lesson18 Double Integrals Over Rectangles Slides
Lesson18   Double Integrals Over Rectangles SlidesLesson18   Double Integrals Over Rectangles Slides
Lesson18 Double Integrals Over Rectangles SlidesMatthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Matthew Leingang
 
Lesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic FunctionsLesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic FunctionsMatthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Matthew Leingang
 
Lesson 8: Derivatives of Polynomials and Exponential functions
Lesson 8: Derivatives of Polynomials and Exponential functionsLesson 8: Derivatives of Polynomials and Exponential functions
Lesson 8: Derivatives of Polynomials and Exponential functionsMatthew Leingang
 
Lesson 27: Integration by Substitution (Section 10 version)
Lesson 27: Integration by Substitution (Section 10 version)Lesson 27: Integration by Substitution (Section 10 version)
Lesson 27: Integration by Substitution (Section 10 version)Matthew Leingang
 
Lesson 19: Partial Derivatives
Lesson 19: Partial DerivativesLesson 19: Partial Derivatives
Lesson 19: Partial DerivativesMatthew Leingang
 
Lesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And LogarithmsLesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And LogarithmsMatthew Leingang
 
Lesson 27: Lagrange Multipliers I
Lesson 27: Lagrange Multipliers ILesson 27: Lagrange Multipliers I
Lesson 27: Lagrange Multipliers IMatthew Leingang
 
Lesson 7: Limits at Infinity
Lesson 7: Limits at InfinityLesson 7: Limits at Infinity
Lesson 7: Limits at InfinityMatthew Leingang
 
Lesson 27: Integration by Substitution, part II (Section 10 version)
Lesson 27: Integration by Substitution, part II (Section 10 version)Lesson 27: Integration by Substitution, part II (Section 10 version)
Lesson 27: Integration by Substitution, part II (Section 10 version)Matthew Leingang
 
Lesson 27: Integration by Substitution (Section 4 version)
Lesson 27: Integration by Substitution (Section 4 version)Lesson 27: Integration by Substitution (Section 4 version)
Lesson 27: Integration by Substitution (Section 4 version)Matthew Leingang
 
Lesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General RegionsLesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General RegionsMatthew Leingang
 

Similar to Curve Sketching II: Graphing Functions (20)

Lesson 18: Graphing
Lesson 18: GraphingLesson 18: Graphing
Lesson 18: Graphing
 
Lesson 9: Basic Differentiation Rules
Lesson 9: Basic Differentiation RulesLesson 9: Basic Differentiation Rules
Lesson 9: Basic Differentiation Rules
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange  Multipliers IILesson 28: Lagrange  Multipliers II
Lesson 28: Lagrange Multipliers II
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers IILesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers II
 
Lesson 20: Derivatives and the Shapes of Curves
Lesson 20: Derivatives and the Shapes of CurvesLesson 20: Derivatives and the Shapes of Curves
Lesson 20: Derivatives and the Shapes of Curves
 
Lesson 17: The Method of Lagrange Multipliers
Lesson 17: The Method of Lagrange MultipliersLesson 17: The Method of Lagrange Multipliers
Lesson 17: The Method of Lagrange Multipliers
 
Lesson18 Double Integrals Over Rectangles Slides
Lesson18   Double Integrals Over Rectangles SlidesLesson18   Double Integrals Over Rectangles Slides
Lesson18 Double Integrals Over Rectangles Slides
 
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
 
Lesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic FunctionsLesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic Functions
 
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
 
Lesson 8: Derivatives of Polynomials and Exponential functions
Lesson 8: Derivatives of Polynomials and Exponential functionsLesson 8: Derivatives of Polynomials and Exponential functions
Lesson 8: Derivatives of Polynomials and Exponential functions
 
Lesson 27: Integration by Substitution (Section 10 version)
Lesson 27: Integration by Substitution (Section 10 version)Lesson 27: Integration by Substitution (Section 10 version)
Lesson 27: Integration by Substitution (Section 10 version)
 
Lesson 19: Partial Derivatives
Lesson 19: Partial DerivativesLesson 19: Partial Derivatives
Lesson 19: Partial Derivatives
 
Lesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And LogarithmsLesson 15: Inverse Functions And Logarithms
Lesson 15: Inverse Functions And Logarithms
 
Lesson 27: Lagrange Multipliers I
Lesson 27: Lagrange Multipliers ILesson 27: Lagrange Multipliers I
Lesson 27: Lagrange Multipliers I
 
Lesson 7: Limits at Infinity
Lesson 7: Limits at InfinityLesson 7: Limits at Infinity
Lesson 7: Limits at Infinity
 
Lesson 27: Integration by Substitution, part II (Section 10 version)
Lesson 27: Integration by Substitution, part II (Section 10 version)Lesson 27: Integration by Substitution, part II (Section 10 version)
Lesson 27: Integration by Substitution, part II (Section 10 version)
 
Lesson 27: Integration by Substitution (Section 4 version)
Lesson 27: Integration by Substitution (Section 4 version)Lesson 27: Integration by Substitution (Section 4 version)
Lesson 27: Integration by Substitution (Section 4 version)
 
Lesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General RegionsLesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General Regions
 
9-8 Notes
9-8 Notes9-8 Notes
9-8 Notes
 

More from Matthew Leingang

Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceMatthew Leingang
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsMatthew Leingang
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Matthew Leingang
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Matthew Leingang
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Matthew Leingang
 

More from Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 

Recently uploaded

Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embeddingZilliz
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfMounikaPolabathina
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 

Recently uploaded (20)

Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embedding
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdf
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 

Curve Sketching II: Graphing Functions

  • 1. Section 4.4 Curve Sketching II V63.0121, Calculus I April 1, 2009 Announcements . . . . . .
  • 2. Graphing Checklist To graph a function f, follow this plan: 0. Find when f is positive, negative, zero, not defined. 1. Find f′ and form its sign chart. Conclude information about increasing/decreasing and local max/min. 2. Find f′′ and form its sign chart. Conclude concave up/concave down and inflection. 3. Put together a big chart to assemble monotonicity and concavity data 4. Graph! . . . . . .
  • 3. Outline More Examples Points of nondifferentiability Horizontal asymptotes Vertical asymptotes Trigonometric and polynomial together . . . . . .
  • 4. Example √ |x| Graph f(x) = x + . . . . . .
  • 5. Example √ |x| Graph f(x) = x + This function looks strange because of the absolute value. But whenever we become nervous, we can just take cases. First, look at f by itself. We can tell that f(0) = 0 and that f(x) > 0 if x is positive. Are there negative numbers which are zeroes for f? Yes, if x = −1 then √ √ x + |x| = −1 + 1 = 0. No other zeros exist. . . . . . .
  • 6. Asymptotic behavior Asymptotically, it’s clear that lim f(x) = ∞, because both x→∞ terms tend to ∞. What about x → −∞? This is now indeterminate of the form −∞ + ∞. To resolve it, first let y = −x to make it look more familiar: ( √) √ √ lim x + −x = lim (−y + y) = lim ( y − y) y→∞ y→∞ x→−∞ Now multiply by the conjugate: √ y − y2 y+y √ lim ( y − y) · √ = −∞ = lim √ y + y y→∞ y + y y→∞ . . . . . .
  • 7. The derivative First, assume x > 0, so d( √) 1 f′ (x) = x+ x =1+ √ dx 2x This is always positive. Also, we see that lim f′ (x) = ∞ and x→0+ ′ lim f (x) = 1. If x is negative, we have x→∞ d( √) 1 f′ (x) = x + −x = 1 − √ dx 2 −x √ Again, this looks weird because −x appears to be a negative number. But since x < 0, −x > 0. . . . . . .
  • 8. Monotonicity We see that f′ (x) = 0 when √ 1 1 1 1 1= √ =⇒ −x = =⇒ −x = =⇒ x = − 2 4 4 2 −x Notice also that lim f′ (x) = −∞ and lim f′ (x) = 1. We can’t x→−∞ x→0− make a multi-factor sign chart because of the absolute value, but the conclusion is this: .′ (x) f 0 −∓ . .. . . ∞ . . + + ↗ −4 ↘ 0 ↗ . .1 . . . . f .(x) . max cusp . . . . . .
  • 9. Concavity If x > 0, then ( ) d 1 1 ′′ 1 + x−1/2 = − x−3/2 f (x) = dx 2 4 This is negative whenever x < 0. If x < 0, then ( ) d 1 1 ′′ −1/2 = − (−x)−3/2 1 − (−x) f (x) = dx 2 4 which is also always negative for negative x. Another way to 1 write this is f′′ (x) = − |x|−3/2 . Here is the sign chart: 4 f′′ . . (x) − .− −. .∞ − .− . . . ⌢ ⌢ 0 . f .(x) . . . . . .
  • 10. Synthesis Now we can put these things together. .′ (x) f 0 −∓ . .. . . ∞ . . + + ↗ −4 ↘ 0 ↗ . 1. . . . m .′′ onotonicity f . (x) − .− −. . .−∞ − − .− . .. . ⌢ ⌢0 ⌢ c . oncavity .1 f .(x) 0 .. 0 .. 4. . 1. . . − 0 .1 s . hape − . .4 . . zero max cusp . . . . . .
  • 11. Graph f .(x) .−1, 1) ( 44 . −1, 0) . ( . . x . . 0, 0) ( .1 f .(x) 0 .. 0 .. 4. . 1. . . − 0 .1 s . hape − . .4 . . zero max cusp . . . . . .
  • 12. Example 2 Graph f(x) = xe−x . . . . . .
  • 13. Example 2 Graph f(x) = xe−x Before taking derivatives, we notice that f is odd, that f(0) = 0, and lim f(x) = 0 x→∞ . . . . . .
  • 14. Monotonicity Now ( ) 2 2 2 f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x ( √ )( √) 2 = 1 − 2x 1 + 2x e−x 2 The factor e−x is always positive so it doesn’t figure into the sign of f′ (x). So our sign chart looks like this: √ − . .. . 0 . + + √. .− 1 2x . 1/2 √ − . . . 0 .. + + √ 1 .+ 2x − . 1/2 ′ f . (x) − − . . . 0 .. 0 . + √. √ ↘ ↗ ↘ . − 1/2 . . . f .(x) .. . 1/2 max min . . . . . .
  • 15. Concavity Now we look at f′′ (x): ( ) 2 2 2 f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x 2 = 2x(2x2 − 3)e−x − − . . . . 0 .. + + .x 2 0 . √ √ − − − . . . . 0 . + √. . 2x − 3 . 3/2 √ √ − . . . . 0 .. + + + √ . 2x + 3 − 3/2 . .′′ (x) f − .− − . − .. .. . + .+ 0+ 0 .. 0 + √ ⌢ √3 . . . . ⌢ ⌣ ⌣ 0 . f .(x) − 3/2 . .. . . /2 IP IP IP . . . . . .
  • 16. Synthesis .′ (x) f − −0 + +.− − . . .. . . . √. . . 0 √ ↘ ↘ 1/2 . ↗ ↗ ↘ ↘ . .. . . 1/2. . m . onotonic − .′′ (x) f − .− + 0− . + .. . − −0 . − .. .. . + .+ 0+ + √. . √3 . ⌣. . . . ⌢ ⌣ 0⌢ ⌢ ⌣ c . oncavity − 3/2 . . /2 √ √ − 2e3 . √1 .√1 . 2e3 3 3 − 2e . f .(x) 0 .. 2e . . . √. √. √ √. . − 1/2 . .. . 0 s . hape − .. .. . 1/2 . 3/2 3/2 . . . max IP IP min IP . . . . . .
  • 17. Graph f .(x) (√ )( √) √ . 1/2, √1 3 2e . 3/2, . 2e3 . . x . . 0, 0) ( . ( √) √ . . − 3/2, − 2e3 ( √ ) 3 . − 1/2, − √1 2e √ √ − 2e3 √1 .√1 . 2e3 3 3 − . 2e . f .(x) 0 .. 2e . . √. √. √√ . − .. . . 3/2 1/2 . . . . . .1/2.. 3/2 . 0 s . hape −. . max IP IP min IP . . . . . .
  • 18. Example 1 1 Graph f(x) = +2 x x . . . . . .
  • 19. Step 0 Find when f is positive, negative, zero, not defined. . . . . . .
  • 20. Step 0 Find when f is positive, negative, zero, not defined. We need to factor f: x+1 1 1 f(x) = + 2 = . x2 x x This means f is 0 at −1 and has trouble at 0. In fact, x+1 = ∞, lim x→0 x2 so x = 0 is a vertical asymptote of the graph. . . . . . .
  • 21. Step 0 Find when f is positive, negative, zero, not defined. We need to factor f: x+1 1 1 f(x) = + 2 = . x2 x x This means f is 0 at −1 and has trouble at 0. In fact, x+1 = ∞, lim x→0 x2 so x = 0 is a vertical asymptote of the graph. We can make a sign chart as follows: − . . 0 .. + . x . +1 − .1 . . 0 .. + + .2 x 0 . − . .. . . ∞ 0+ .. + f .(x) − 0 . .1 . . . . . .
  • 22. For horizontal asymptotes, notice that x+1 lim = 0, x2 x→∞ so y = 0 is a horizontal asymptote of the graph. The same is true at −∞. . . . . . .
  • 23. Monotonicity . . . . . .
  • 24. Monotonicity We have x+2 1 2 f′ (x) = − − 3 =− 3 . 2 x x x The critical points are x = −2 and x = 0. We have the following sign chart: − . . 0 .. + . − . (x + 2) − .2 − . . 0 .. + .3 x 0 . . . . . . .
  • 25. Monotonicity We have x+2 1 2 f′ (x) = − − 3 =− 3 . 2 x x x The critical points are x = −2 and x = 0. We have the following sign chart: − . . 0 .. + . − . (x + 2) − .2 − . . 0 .. + .3 x 0 . .′ (x) f − − . . . ∞ 0 .. .. + − .2 0 . f .(x) . . . . . .
  • 26. Monotonicity We have x+2 1 2 f′ (x) = − − 3 =− 3 . 2 x x x The critical points are x = −2 and x = 0. We have the following sign chart: − . . 0 .. + . − . (x + 2) − .2 − . . 0 .. + .3 x 0 . .′ (x) f − .. − . . . ∞ 0 .. + − ↘ .2 0 . . f .(x) . . . . . .
  • 27. Monotonicity We have x+2 1 2 f′ (x) = − − 3 =− 3 . 2 x x x The critical points are x = −2 and x = 0. We have the following sign chart: − . . 0 .. + . − . (x + 2) − .2 − . . 0 .. + .3 x 0 . .′ (x) f − .. − . . . ∞ 0 .. + − ↘ .2 ↗ 0 . . . f .(x) . . . . . .
  • 28. Monotonicity We have x+2 1 2 f′ (x) = − − 3 =− 3 . 2 x x x The critical points are x = −2 and x = 0. We have the following sign chart: − . . 0 .. + . − . (x + 2) − .2 − . .. . 0+ .3 x 0 . .′ (x) f − .. ∞− . . .. . 0 + − ↘ .2 ↗ 0↘ .. . . f .(x) . . . . . .
  • 29. Monotonicity We have x+2 1 2 f′ (x) = − − 3 =− 3 . 2 x x x The critical points are x = −2 and x = 0. We have the following sign chart: − . . 0 .. + . − . (x + 2) − .2 − . .. . 0+ .3 x 0 . .′ (x) f − .. ∞− . . .. . 0 + − ↘ .2 ↗ 0↘ .. . . f .(x) m . in . . . . . .
  • 30. Monotonicity We have x+2 1 2 f′ (x) = − − 3 =− 3 . 2 x x x The critical points are x = −2 and x = 0. We have the following sign chart: − . . 0 .. + . − . (x + 2) − .2 − . .. . 0+ .3 x 0 . .′ (x) f − .. ∞− . . .. . 0 + − ↘ .2 ↗ 0↘ .. . . f .(x) m . in V .A . . . . . .
  • 31. Concavity . . . . . .
  • 32. Concavity We have 2 6 2(x + 3) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . . 0 .. + . . x + 3) ( − .3 . . 0 .. + + .4 x 0 . .′ (x) f ∞ 0 .. .. − .3 0 . f .(x) . . . . . .
  • 33. Concavity We have 2 6 2(x + 3) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . . 0 .. + . . x + 3) ( − .3 . . 0 .. + + .4 x 0 . .′ (x) f − . − .. ∞ 0 .. − .3 0 . f .(x) . . . . . .
  • 34. Concavity We have 2 6 2(x + 3) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . . 0 .. + . . x + 3) ( − .3 . . 0 .. + + .4 x 0 . .′ (x) f − . − .. .+ ∞ 0 .. + − .3 0 . f .(x) . . . . . .
  • 35. Concavity We have 2 6 2(x + 3) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . . 0 .. + . . x + 3) ( − .3 . .. . 0+ + .4 x 0 . .′ (x) f − . − .. .+ .. . + ∞+ 0 + − .3 0 . f .(x) . . . . . .
  • 36. Concavity We have 2 6 2(x + 3) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . . 0 .. + . . x + 3) ( − .3 . .. . 0+ + .4 x 0 . .′ (x) f − . − .. .+ .. . + ∞+ 0 + . ⌢ .3 − 0 . f .(x) . . . . . .
  • 37. Concavity We have 2 6 2(x + 3) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . . 0 .. + . . x + 3) ( − .3 . .. . 0+ + .4 x 0 . .′ (x) f − . − .. .+ .. . + ∞+ 0 + . . ⌢ .3 ⌣ − 0 . f .(x) . . . . . .
  • 38. Concavity We have 2 6 2(x + 3) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . . 0 .. + . . x + 3) ( − .3 . .. . 0+ + .4 x 0 . .′ (x) f − . − .. .+ .. . + ∞+ 0 + . . .. ⌢ .3 ⌣ 0⌣ − f .(x) . . . . . .
  • 39. Concavity We have 2 6 2(x + 3) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . . 0 .. + . . x + 3) ( − .3 . .. . 0+ + .4 x 0 . .′ (x) f − . − .. .+ .. . + ∞+ 0 + . . .. ⌢ .3 ⌣ 0⌣ − f .(x) I .P . . . . . .
  • 40. Concavity We have 2 6 2(x + 3) f′′ (x) = + = . x 3 x4 x4 The critical points of f′ are −3 and 0. Sign chart: − . . 0 .. + . . x + 3) ( − .3 . .. . 0+ + .4 x 0 . .′ (x) f − . − .. .+ .. . + ∞+ 0 + . . .. ⌢ .3 ⌣ 0⌣ − f .(x) I .P V .A . . . . . .
  • 41. Synthesis . .′ − .. ∞− . . .. . 0 f + − ↘ .2 ↗ 0↘ .. . . m . onotonicity .′′ − . − .. ∞− .. . − .+ 0 f + . . .. ⌢ .3 ⌣ 0⌣ − c . oncavity − − . 2/9 . 1/4 ∞ 0 . 0 .. 0f .. .. . . ∞s . . hape of f − .∞ . .3 −− .1 . . − −+ .2 0 . + . . . . . .
  • 42. Synthesis . .′ − .. ∞− . . .. . 0 f + − ↘ .2 ↗ 0↘ .. . . m . onotonicity .′′ − . − .. ∞− .. . − .+ 0 f + . . .. ⌢ .3 ⌣ 0⌣ − c . oncavity − − . 2/9 . 1/4 ∞ 0 . 0 .. 0f .. .. . . ∞s . . hape of f − .∞ . .3 −− .1 . . − −+ .2 0 . + H .A . . . . . .
  • 43. Synthesis . .′ − .. ∞− . . .. . 0 f + − ↘ .2 ↗ 0↘ .. . . m . onotonicity .′′ − . − .. ∞− .. . − .+ 0 f + . . .. ⌢ .3 ⌣ 0⌣ − c . oncavity − − . 2/9 . 1/4 ∞ 0 . 0 .. 0f .. .. . . ∞s . . hape of f − .∞ . .3 −− .1 . . − −+ .2 0 . + .A . H . . . . . .
  • 44. Synthesis . .′ − .. ∞− . . .. . 0 f + − ↘ .2 ↗ 0↘ .. . . m . onotonicity .′′ − . − .. ∞− .. . − .+ 0 f + . . .. ⌢ .3 ⌣ 0⌣ − c . oncavity − − . 2/9 . 1/4 ∞ 0 . 0 .. 0f .. .. . . ∞s . . hape of f − .∞ . .3 −− .1 . . − −+ .2 0 . + .A . I .P H . . . . . .
  • 45. Synthesis . .′ − .. ∞− . . .. . 0 f + − ↘ .2 ↗ 0↘ .. . . m . onotonicity .′′ − . − .. ∞− .. . − .+ 0 f + . . .. ⌢ .3 ⌣ 0⌣ − c . oncavity − − . 2/9 . 1/4 ∞ 0 . 0 .. 0f .. .. . . ∞s . . hape of f − .∞ . .3 −− .1 . . − −+ .2 0 . + .A . .P . I H . . . . . .
  • 46. Synthesis . .′ − .. ∞− . . .. . 0 f + − ↘ .2 ↗ 0↘ .. . . m . onotonicity .′′ − . − .. ∞− .. . − .+ 0 f + . . .. ⌢ .3 ⌣ 0⌣ − c . oncavity − − . 2/9 . 1/4 ∞ 0 . 0 .. 0f .. .. . . ∞s . . hape of f − .∞ . .3 −− .1 . . − −+ .2 0 . + .A . .P . . in I H m . . . . . .
  • 47. Synthesis . .′ − .. ∞− . . .. . 0 f + − ↘ .2 ↗ 0↘ .. . . m . onotonicity .′′ − . − .. ∞− .. . − .+ 0 f + . . .. ⌢ .3 ⌣ 0⌣ − c . oncavity − − . 2/9 . 1/4 ∞ 0 . 0 .. 0f .. .. . . ∞s . . hape of f − .∞ . .3 −− .1 . . − −+ .2 0 . + .A . .P . . in . I H m . . . . . .
  • 48. Synthesis . .′ − .. ∞− . . .. . 0 f + − ↘ .2 ↗ 0↘ .. . . m . onotonicity .′′ − . − .. ∞− .. . − .+ 0 f + . . .. ⌢ .3 ⌣ 0⌣ − c . oncavity − − . 2/9 . 1/4 ∞ 0 . 0 .. 0f .. .. . . ∞s . . hape of f − .∞ . .3 −− .1 . . − −+ .2 0 . + .A . .P . . in . 0 . I H m . . . . . .
  • 49. Synthesis . .′ − .. ∞− . . .. . 0 f + − ↘ .2 ↗ 0↘ .. . . m . onotonicity .′′ − . − .. ∞− .. . − .+ 0 f + . . .. ⌢ .3 ⌣ 0⌣ − c . oncavity − − . 2/9 . 1/4 ∞ 0 . 0 .. 0f .. .. . . ∞s . . hape of f − .∞ . .3 −− .1 . . − −+ .2 0 . + .A . .P . . in . 0. . I H m . . . . . .
  • 50. Synthesis . .′ − .. ∞− . . .. . 0 f + − ↘ .2 ↗ 0↘ .. . . m . onotonicity .′′ − . − .. ∞− .. . − .+ 0 f + . . .. ⌢ .3 ⌣ 0⌣ − c . oncavity − − . 2/9 . 1/4 ∞ 0 . 0 .. 0f .. .. . . ∞s . . hape of f − .∞ . .3 −− .1 . 0. − −+. .2 + .A . .P . . in . 0 . .A . I H m V . . . . . .
  • 51. Synthesis . .′ − .. ∞− . . .. . 0 f + − ↘ .2 ↗ 0↘ .. . . m . onotonicity .′′ − . − .. ∞− .. . − .+ 0 f + . . .. ⌢ .3 ⌣ 0⌣ − c . oncavity − − . 2/9 . 1/4 ∞ 0 . 0 .. 0f .. .. . . ∞s . . hape of f − .∞ . .3 −− .1 . 0. − −+. .2 + .A . .P . . in . 0 . .A . . I H m V . . . . . .
  • 52. Synthesis . .′ − .. ∞− . . .. . 0 f + − ↘ .2 ↗ 0↘ .. . . m . onotonicity .′′ − . − .. ∞− .. . − .+ 0 f + . . .. ⌢ .3 ⌣ 0⌣ − c . oncavity − − . 2/9 . 1/4 ∞ 0 . 0 .. 0f .. .. . . ∞s . . hape of f − .∞ . .3 −− .1 . 0. − −+. .2 + .A . .P . . in . 0 . .A . . A . I H m V H . . . . . .
  • 53. Graph y . . x . . . . −3, −2/9) . −2, −1/4) ( ( . . . . . .
  • 54. Problem Graph f(x) = cos x − x . . . . . .
  • 55. Problem Graph f(x) = cos x − x 5 5 5 10 5 10 . . . . . .
  • 56. Problem Graph f(x) = x ln x2 . . . . . .
  • 57. Problem Graph f(x) = x ln x2 6 4 2 3 2 1 1 2 3 2 4 6 . . . . . .