Lesson 17: Inverse Trigonometric Functions
Upcoming SlideShare
Loading in...5
×
 

Lesson 17: Inverse Trigonometric Functions

on

  • 16,233 views

The inverse trig functions are transcendental, but their derivatives are algebraic!

The inverse trig functions are transcendental, but their derivatives are algebraic!

Statistics

Views

Total Views
16,233
Views on SlideShare
16,140
Embed Views
93

Actions

Likes
0
Downloads
138
Comments
0

2 Embeds 93

http://www.slideshare.net 47
http://newclasses.nyu.edu 46

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Lesson 17: Inverse Trigonometric Functions Lesson 17: Inverse Trigonometric Functions Presentation Transcript

  • Section 3.5 Inverse Trigonometric Functions V63.0121, Calculus I March 11–12, 2009 Announcements Get half of your unearned ALEKS points back by March 22 . . . . . .
  • What functions are invertible? In order for f−1 to be a function, there must be only one a in D corresponding to each b in E. Such a function is called one-to-one The graph of such a function passes the horizontal line test: any horizontal line intersects the graph in exactly one point if at all. If f is continuous, then f−1 is continuous. . . . . . .
  • Outline Inverse Trigonometric Functions Derivatives of Inverse Trigonometric Functions Arcsine Arccosine Arctangent Arcsecant . . . . . .
  • arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . . . . x . s . in π π − − . . 2 2 . . . . . .
  • arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . . . . x . s . in π π − − . . 2 2 . . . . . .
  • arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . . =x y . . . x . s . in π π − − . . 2 2 . . . . . .
  • arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . a . rcsin . . . x . s . in π π − − . . 2 2 The domain of arcsin is [−1, 1] [ π π] The range of arcsin is − , 22 . . . . . .
  • arccos Arccos is the inverse of the cosine function after restriction to [0, π] y . c . os . . x . π . 0 . . . . . . .
  • arccos Arccos is the inverse of the cosine function after restriction to [0, π] y . c . os . . x . π . 0 . . . . . . .
  • arccos Arccos is the inverse of the cosine function after restriction to [0, π] y . . =x y c . os . . x . π . 0 . . . . . . .
  • arccos Arccos is the inverse of the cosine function after restriction to [0, π] a . rccos y . c . os . . x . π . 0 . The domain of arccos is [−1, 1] The range of arccos is [0, π] . . . . . .
  • arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. y . . x . π π 3π 3π − − . . . . 2 2 2 2 t . an . . . . . .
  • arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. y . . x . π π 3π 3π − − . . . . 2 2 2 2 t . an . . . . . .
  • arctan Arctan is the inverse of the tangent function after restriction to . =x y [−π/2, π/2]. y . . x . π π 3π 3π − − . . . . 2 2 2 2 t . an . . . . . .
  • arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. y . π . a . rctan 2 . x . π − . 2 The domain of arctan is (−∞, ∞) ( π π) The range of arctan is − , 22 π π lim arctan x = , lim arctan x = − 2 x→−∞ 2 x→∞ . . . . . .
  • Outline Inverse Trigonometric Functions Derivatives of Inverse Trigonometric Functions Arcsine Arccosine Arctangent Arcsecant . . . . . .
  • Theorem (The Inverse Function Theorem) Let f be differentiable at a, and f′ (a) ̸= 0. Then f−1 is defined in an open interval containing b = f(a), and 1 (f−1 )′ (b) = ′ −1 f (f (b)) . . . . . .
  • Theorem (The Inverse Function Theorem) Let f be differentiable at a, and f′ (a) ̸= 0. Then f−1 is defined in an open interval containing b = f(a), and 1 (f−1 )′ (b) = ′ −1 f (f (b)) “Proof”. If y = f−1 (x), then f(y) = x, So by implicit differentiation dy dy 1 1 f′ (y) = 1 =⇒ =′ = ′ −1 dx dx f (y) f (f (x)) . . . . . .
  • The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 = 1 =⇒ = = cos y dx dx cos y cos(arcsin x) . . . . . .
  • The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 = 1 =⇒ = = cos y dx dx cos y cos(arcsin x) To simplify, look at a right triangle: . . . . . . .
  • The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 = 1 =⇒ = = cos y dx dx cos y cos(arcsin x) To simplify, look at a right triangle: 1 . x . . . . . . . .
  • The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 = 1 =⇒ = = cos y dx dx cos y cos(arcsin x) To simplify, look at a right triangle: 1 . x . . = arcsin x y . . . . . . .
  • The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 = 1 =⇒ = = cos y dx dx cos y cos(arcsin x) To simplify, look at a right triangle: 1 . x . . = arcsin x y .√ . 1 − x2 . . . . . .
  • The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 = 1 =⇒ = = cos y dx dx cos y cos(arcsin x) To simplify, look at a right triangle: √ cos(arcsin x) = 1 − x2 1 . x . . = arcsin x y .√ . 1 − x2 . . . . . .
  • The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 = 1 =⇒ = = cos y dx dx cos y cos(arcsin x) To simplify, look at a right triangle: √ cos(arcsin x) = 1 − x2 1 . x . So d 1 arcsin(x) = √ . = arcsin x y 1 − x2 .√ dx . 1 − x2 . . . . . .
  • Graphing arcsin and its derivative 1 .√ 1 − x2 a . rcsin . | | . . − .1 1 . . . . . . .
  • The derivative of arccos Let y = arccos x, so x = cos y. Then dy dy 1 1 − sin y = 1 =⇒ = = − sin y − sin(arccos x) dx dx . . . . . .
  • The derivative of arccos Let y = arccos x, so x = cos y. Then dy dy 1 1 − sin y = 1 =⇒ = = − sin y − sin(arccos x) dx dx To simplify, look at a right triangle: √ sin(arccos x) = 1 − x2 √ 1 . . 1 − x2 So d 1 . = arccos x y arccos(x) = − √ . 1 − x2 dx x . . . . . . .
  • Graphing arcsin and arccos a . rccos a . rcsin . | | . . − .1 1 . . . . . . .
  • Graphing arcsin and arccos a . rccos Note (π ) −θ cos θ = sin 2 a . rcsin π =⇒ arccos x = − arcsin x 2 . So it’s not a surprise that their | | . . − .1 1 . derivatives are opposites. . . . . . .
  • The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = cos2 (arctan x) = 1 =⇒ = sec2 y dx dx . . . . . .
  • The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = cos2 (arctan x) = 1 =⇒ = sec2 y dx dx To simplify, look at a right triangle: . . . . . . .
  • The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = cos2 (arctan x) = 1 =⇒ = sec2 y dx dx To simplify, look at a right triangle: x . . 1 . . . . . . .
  • The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = cos2 (arctan x) = 1 =⇒ = sec2 y dx dx To simplify, look at a right triangle: x . . = arctan x y . 1 . . . . . . .
  • The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = cos2 (arctan x) = 1 =⇒ = sec2 y dx dx To simplify, look at a right triangle: √ x . . 1 + x2 . = arctan x y . 1 . . . . . . .
  • The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = cos2 (arctan x) = 1 =⇒ = sec2 y dx dx To simplify, look at a right triangle: 1 cos(arctan x) = √ √ 1 + x2 x . . 1 + x2 . = arctan x y . 1 . . . . . . .
  • The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = cos2 (arctan x) = 1 =⇒ = sec2 y dx dx To simplify, look at a right triangle: 1 cos(arctan x) = √ √ 1 + x2 x . . 1 + x2 So d 1 . = arctan x y arctan(x) = . 1 + x2 dx 1 . . . . . . .
  • Graphing arctan and its derivative y . a . rctan 1 . x . 1 + x2 . . . . . .
  • Example √ x. Find f′ (x). Let f(x) = arctan . . . . . .
  • Example √ x. Find f′ (x). Let f(x) = arctan Solution √ d√ d 1 1 1 ·√ (√ )2 arctan x = x= 1+x 2 x dx x dx 1+ 1 =√ √ 2 x + 2x x . . . . . .
  • Recap y′ y 1 √ arcsin x 1 − x2 1 Remarkable that the arccos x − √ 1 − x2 derivatives of these 1 transcendental functions arctan x 1 + x2 are algebraic (or even 1 − arccot x rational!) 1 + x2 1 √ arcsec x x x2 − 1 1 arccsc x − √ x x2 − 1 . . . . . .