ამოცანების ამოხსნის ხელოვნება

1,601 views
1,487 views

Published on

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,601
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
8
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

ამოცანების ამოხსნის ხელოვნება

  1. 1. ამოცანების ამოხსნის ხელოვნება<br />VIIკლ.მათემატიკა.<br />(ავტორები:ნ.ჯაფარიძე,მ.წილოსანი,ნ.წულაია.)<br />qalaqquTaisis #17 sajaroskolis VII klasismoswavleebi: likakokaia, xelaZeana, qristinesirbilaZe, salomegelaZe, irakliRibraZe<br />ხელ-ლი: ლ.ბარბაქაძე<br />
  2. 2. “ყოველ ამოცანას ისეთი სახე უნდა მივცეთ, რომ მისი ამოხსნა შეიძლებოდეს.”<br /> ნილს ჰენრიკ აბელი<br />ნილსჰენრიკაბელი( 1802- 1829)ნორვეგიელიმათემატიკოსი.<br />
  3. 3. ….განტოლებების შედგენით იხსნება ძალიან ბევრი პრაქტიკული ამოცანა. <br />მაგრამ არსებობს ამოცანების ამოხნისადმი არასდანდარტული მიდგომა და ამოხსნის ორიგინალური მეთოდები. მათი გამოყენებით ამოცანები ”ლამაზად”, კომპაქტურად იხსნება. ჩვენი მიზანია თქვენც დაგანახოთ მათემატიკური ამოხსნების ეს ”სილამაზე”. <br />განვიხილოთ რამდენიმე ამოცანა.<br />
  4. 4. ამოცანა 1. <br />ფერმაში ჰყავთ ათასი კურდღელი და ქათამი. ყველას ერთად აქვს 3150 ფეხი. რამდენი კურდღელი და რამდენი ქათამი ჰყავთ ფერმაში? <br />
  5. 5. ამოხსნა<br />წარმოვიდგინოთ, რომ კურდღლები დგანან ორ ფეხზე, ხოლო ქათმები ერთ ფეხზე, მაშინ მიწაზე მდგომი ფეხების რაოდენობა იქნება 3150/2=1575. ახლა კიდევ თუ წარმოვიდგენთ, რომ ყველა ქათამი გავიყვანეთ და კურდღლები დავაყენეთ ცალ ფეხზე, მიწაზე მდგომი ფეხების რაოდენობას გამოაკლდება ათასი ფეხი (კურდღლების და ქათმების საერთო რაოდენობა 1000-ია). ე.ი. დარჩა 1575-1000=575. ეს კი კურდღლების რაოდენობაა იმიტომ, რომ ყველა კურდღელი დგას ცალ ფეხზე. ამრიგად, ფერმაში 575 კურდღელი და 425 ქათამია.<br />
  6. 6. ამოცანა 2. <br />ალადინმა ჟასმინს მიართვა ერთი ფინჯანი ყავა. დალია რა ნახევარი ფინჯანი, შეავსებინა რძით, დალია ნარევის და კვლავ შეავსებინა რძით, დალია კიდევ , ისევ შეავსებინა რძით. ამის შემდეგ ფინჯანი ბოლომდე შესვა. რომელი მეტი დალია ჟასმინმა ყავა თუ რძე?<br />
  7. 7. ამოხსნა<br />რადგან ჟასმინმა ყავა ერთი ფინჯანი დალია, დავთვალოთ დალეული რძის რაოდენობა და შევადაროთ დალეული ყავისრაოდენობას. დალეული რძის რაოდენობაა<br />+ + =1<br />ე.ი. ჟასმინს დაულევია თანაბარი რაოდენობის რძე და ყავა.<br />
  8. 8. ამოცანა 3. <br />A და B ქალაქებს შორის მანძილი 100 კმ-ია. A ქალაქის 100 და B ქალაქის 50 მოსწავლე მონაწილეობს ღონისძიებაში. სად უნდა ჩავატაროთ ღონისძიება, რომ ყველა მოსწავლის მიერ გავლილ მანძილთა ჯამი იყოს უმცირესი?<br />100<br />50<br />
  9. 9. ამოხსნა<br />ვთქვათ ღონისძიება ჩავატარეთ C პუნქტში, რომელიც A-დან x კმ-ითაა დაშორებული. ცხადია, C პუნქტი B-დან დაშორებული იქნება (100-x) კმ-ით. A-დან წამოსული ბავშვის მიერ გავლილ მანძილთ ჯამი იქნება 100x კმ, ხოლო B-დან წამოსულისა კი - 50(100-x)კმ. ყველა მოსწავლის მიერ გავლილი მანძილი იქნება<br />100x+50(100-x)=50x+5000კმ<br />თუ ღონისძიებას ჩავატარებთ A-ში, მაშინ იმგზავრებენ მხოლოდ B ქალაქის მოსწავლეები. ისინი გაივლიან 50*100 კმ-ს. ცხადია, 50x+5000>50*100<br />ე.ი. ღონისძიება უნდა ჩატარდეს A პუნქტში.<br />X კმ<br />(100–x)კმ<br />A<br />B<br />C<br />
  10. 10. ამოცანა4. <br />პროდუქციის დასამზადებლად საჭირო ნედლეული ჯდება ამ პროდუქციის გასაყიდი ფასის ნახევარი და კიდევ 1000ლ. მუშა-მოსამსახურეთა ხელასების გადახდას სჭირდება დარჩენილი თანხის ნახევარი და კიდევ 1000ლ. ყველა სხვა გადასახადს სჭირდება ამ ეტაპზე დარჩენილი თანხის ნახევარი და კიდევ 1000ლ. რამდენი უნდა დახარჯოს მეწარმემ, რომ 1000ლ მოგება დარჩეს?<br />
  11. 11. ამოხსნა<br />ამოცანის ამოსახსნელად გაძლევთ თანხის განაწილების სქემას.<br />მითითება: შევაბრუნოთ ისრები და ანგარიში დავიწყოთ ქვემოდან ზემოთ.<br />პროდუქციის გასაყიდი ფასი<br />8000<br />4000<br />4000<br />1000+<br />2000<br />2000<br />1000+<br />1000+<br />1000<br />1000<br />
  12. 12. არითმეტიკული ამოცანებისადმი ალგებრული მიდგომის ნიმუშები გვხვდება ჯერ კიდევ ძველ ეგვიპტურ პაპირუსში, რომელიც ძვ. წ.აღ. 2000-1700 წლებშია დაწერილი ვინმე აჰმესის მიერ<br />
  13. 13. ahmesismaTematikuripapirusi (rindispapirusi) ZvelegvipturisaswavlosaxelmZRvaneloaariTmetikasadageometriaSi. papirusissigrZe 5,25 metriadasigane 33 santimetri. ahmesispapirusiaRmoCeniliiqna 1858 welsdarindispapirusissaxeliTaacnobili, pirvelimflobelissapativcemulod. 1870 welspapirusigaSifres, TargmnesdagamosceswignissaxiT. xelnawerisudidesinawiliinaxebalondonSidanawiliniu-iorkSi. ahmesispapirusSi 84 amocanispirobadaamoxsnaamocemulidawarmoadgensyvelazesrulegvipturamocanaTakrebuls, romelmacCvenamdemoaRwia.<br />
  14. 14. საილუსტრაციოდ გავეცნოთ ერთ, რიგით 26-ე ამოცანას. თავად დარწმუნდებით, რა ლამაზ მეთოდს იყენებს აჰმესი.<br /> ამოცანა: <br />”რაოდენობა და მისი მეოთხედი ერთად არის 15. იპოვეთ რაოდენობა”.<br /> ამოხსნა:<br />”დაიწყე დათვლა 4-დან, - გვირჩევს აჰმესი, - მათგან უნდა აიღო მეოთხედი, სახელდობრ<br />1.ერთად იქნება ხუთი”.<br />ამის შემდეგ აჰმესი 15-ს ჰყოფს 5-ზე და განაყოფს, ესე იგი, 3-ს ამრავლებს 4-ზე. რადგან 4*3=12 ამიტომ საძიებელი რაოდენობაა 12 .<br />
  15. 15. როგორც უკვე ვნახეთ, არსებობს ამოცანების ამოხნისადმი არასდანდარტული მიდგომა და ამოხსნის ორიგინალური მეთოდები. დავრწმუნდით,რომ მათი გამოყენებით ამოცანები ”ლამაზად”და კომპაქტურად იხსნება. <br />
  16. 16. მომავალ შეხვედრამდე!<br />

×