2.6 FAMILIES OFFUNCTIONS
FAMILIES OF FUNCTIONS   There are sets of functions, called families that    share certain characteristics.    A  parent...
FAMILIES OF FUNCTIONS
TRANSLATIONS   One type of transformation is a translation.    A  translation shifts the graph of the parent function   ...
EXAMPLE       How can you represent each translation of       graphically?1.       Shift the parent graph       down 2 uni...
EXAMPLE       How can you represent each translation of       graphically?1.Shift the parent graph right 3units and up 1 u...
REFLECTIONS   A reflection flips the graph over a line (such as    the x – or y – axis)     Each  point on the graph of ...
When you reflect a graphREFLECTIONS   in the y-axis, the x values              change signs and the y-              values...
REFLECTING A FUNCTIONALGEBRAICALLY      ( )Let f x = 3 x + 3            ( )                         and g x be the reflect...
REFLECTING A FUNCTIONALGEBRAICALLY      ( )               ( )Let f x = 3 x + 3 and g x be the reflection in the           ...
VERTICAL STRETCH ANDVERTICAL COMPRESSION A vertical stretch multiplies all y-values of a  function by the same factor gre...
EXAMPLEThe table represents the function f(x). Completethe table to find the vertical stretch and verticalcompression. The...
EXAMPLE: COMBININGTRANSFORMATIONSThe graph of g(x) is the graph of f(x) = 4xcompressed vertically by the factor ½ and then...
EXAMPLE: COMBININGTRANSFORMATIONSThe graph of g(x) is the graph of f(x) = x stretchedvertically by the factor 2 and then t...
HOMEWORK   2.6 Worksheet
2.6
2.6
2.6
Upcoming SlideShare
Loading in …5
×

2.6

351 views

Published on

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
351
On SlideShare
0
From Embeds
0
Number of Embeds
41
Actions
Shares
0
Downloads
8
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • These notes were made using the textbook and “reteaching”
  • 2.6

    1. 1. 2.6 FAMILIES OFFUNCTIONS
    2. 2. FAMILIES OF FUNCTIONS There are sets of functions, called families that share certain characteristics. A parent function is the simplest form in a set of functions that form a family.  Each function in the family is a transformation of the parent function
    3. 3. FAMILIES OF FUNCTIONS
    4. 4. TRANSLATIONS One type of transformation is a translation. A translation shifts the graph of the parent function horizontally, vertically, or both without changing shape or orientation.
    5. 5. EXAMPLE How can you represent each translation of graphically?1. Shift the parent graph down 2 units2. Shift the parent graph left 1 unit
    6. 6. EXAMPLE How can you represent each translation of graphically?1.Shift the parent graph right 3units and up 1 units2. Shift the parent graph left 2 units and down 3 units
    7. 7. REFLECTIONS A reflection flips the graph over a line (such as the x – or y – axis)  Each point on the graph of the reflected function is the same distance from the line of reflection as its corresponding point on the graph of the original function.
    8. 8. When you reflect a graphREFLECTIONS in the y-axis, the x values change signs and the y- values stay the same. When you reflect a graph in the x-axis, the y-values change signs and the x- values stay the same.
    9. 9. REFLECTING A FUNCTIONALGEBRAICALLY ( )Let f x = 3 x + 3 ( ) and g x be the reflection ( )in the x-axis. What is a function rule for g x ? g ( x) = − f ( x)
    10. 10. REFLECTING A FUNCTIONALGEBRAICALLY ( ) ( )Let f x = 3 x + 3 and g x be the reflection in the ( )y-axis. What is a function rule for g x ? g ( x) = f ( −x)
    11. 11. VERTICAL STRETCH ANDVERTICAL COMPRESSION A vertical stretch multiplies all y-values of a function by the same factor greater than 1. A vertical compression reduces all y-values of a function by the same factor between 0 and 1.Why do you think the value being multiplied isalways positive?
    12. 12. EXAMPLEThe table represents the function f(x). Completethe table to find the vertical stretch and verticalcompression. Then graph the functions.
    13. 13. EXAMPLE: COMBININGTRANSFORMATIONSThe graph of g(x) is the graph of f(x) = 4xcompressed vertically by the factor ½ and thenreflected in the y-axis. What is the function rulefor g(x)?
    14. 14. EXAMPLE: COMBININGTRANSFORMATIONSThe graph of g(x) is the graph of f(x) = x stretchedvertically by the factor 2 and then translateddown 3 units. What is the function rule for g(x)?
    15. 15. HOMEWORK 2.6 Worksheet

    ×