Am Epistonlecture1


Published on

Published in: Technology, Business
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Am Epistonlecture1

  1. 1. AME 436 Energy and Propulsion Paul D. Ronney Spring 2006
  2. 2. AME 436 Energy and Propulsion Lecture 1 Introduction: engine types, basic principles, alternatives to IC engines, history of IC engines, review of thermodynamics
  3. 3. Helpful handy hints <ul><li>Download lectures from website before class , print out and bring to class so you can annotate notes </li></ul><ul><li>If you don’t have Powerpoint, you can download a free powerpoint viewer from Microsoft’s website </li></ul><ul><li>… but if you don’t have the full Powerpoint and Excel, you won’t be able to open the imbedded Excel spreadsheets </li></ul><ul><li>Please ask questions in class - the goal of the lecture is to maintain a 2-way “Socratic” dialogue on the subject of the lecture </li></ul><ul><li>Bringing your laptop and wireless cards allows you to download files from my website as necessary </li></ul>
  4. 4. Assignment <ul><li>By Tuesday 1/17/06 </li></ul><ul><ul><li>Email your schedule to me ( [email_address] ) so I can choose office hours (default value: 9 am - 12 am Thursdays) </li></ul></ul><ul><ul><li>(Optional) email your picture to me so I can start to identify you </li></ul></ul>
  5. 5. Nomenclature (summary for whole course) <ul><li>A Cross-section area (m 2 ) </li></ul><ul><li>A * Throat area (m 2 ) </li></ul><ul><li>A e Exit area (m 2 ) </li></ul><ul><li>ATDC After Top Dead Center </li></ul><ul><li>B Transfer number for droplet burning (---) </li></ul><ul><li>BMEP Brake Mean Effective Pressure (N/m 2 ) </li></ul><ul><li>BSFC Brake Specific Fuel Consumption </li></ul><ul><li>BSNO x Brake Specific NO x (g/kW-hr or kg/J) (similar definition with CO, UHC emissions) </li></ul><ul><li>BTDC Before Top Dead Center </li></ul><ul><li>c Sound speed (m/s) </li></ul><ul><li>C Duct circumference (m) </li></ul><ul><li>C D Drag coefficient (---) </li></ul><ul><li>C f Friction coefficient (---) </li></ul><ul><li>CO Carbon monoxide (compound having 1 carbon and 1 oxygen atom) </li></ul><ul><li>CM Control Mass </li></ul><ul><li>C P Heat capacity at constant pressure (J/kgK) </li></ul><ul><li>C v Heat capacity at constant volume (J/kgK) </li></ul><ul><li>CV Control Volume </li></ul><ul><li>D Mass diffusivity (m 2 /s) </li></ul><ul><li>D Drag force (N) </li></ul><ul><li>DORF Degree Of Reaction Freedom </li></ul><ul><li>E Energy contained by a substance = U + KE + PE (J) </li></ul><ul><li>E Activation Energy (J/mole) </li></ul><ul><li>f Fuel mass fraction in mixture (---) </li></ul><ul><li>FAR Fuel to air mass ratio (---) </li></ul><ul><li>FMEP Friction Mean Effective Pressure (N/m 2 ) </li></ul>
  6. 6. Nomenclature (summary for whole course) <ul><li>g Acceleration of gravity (m/s 2 ) </li></ul><ul><li>g Gibbs function  h - Ts (J/kg) </li></ul><ul><li>H Enthalpy  U + PV (J) </li></ul><ul><li>h Enthalpy per unit mass = u + Pv (J/kg) </li></ul><ul><li>h Heat transfer coefficient (dimensionless value in AirCycles.xls spreadsheets) </li></ul><ul><li>H Heat transfer coefficient (usually W/m 2 K, dimensionless in AirCycles.xls files) </li></ul><ul><li>Enthalpy of chemical species i per mole = (J/mole) </li></ul><ul><li>Thermal enthalpy of chemical species i per mole (J/mole) </li></ul><ul><li>ICE Internal Combustion Engine </li></ul><ul><li>IMEP Indicated Mean Effective Pressure (N/m 2 ) </li></ul><ul><li>ISFC Indicated Specific Fuel Consumption </li></ul><ul><li>I SP Specific impulse (sec) </li></ul><ul><li>K i Equlibrium constant of chemical species i (---) </li></ul><ul><li>k Thermal conductivity (W/mK) </li></ul><ul><li>k Reaction rate constant ([moles/m 3 ] 1-n /sec) (n = order of reaction) </li></ul><ul><li>K Droplet burning rate constant (m 2 /s) </li></ul><ul><li>Ka Karlovitz number  0.157 Re L -1/2 (u ’ /S L ) 2 </li></ul><ul><li>KE Kinetic energy (J or J/kg) </li></ul><ul><li>L Lift force (N) </li></ul><ul><li>L f Jet flame length </li></ul><ul><li>L I Integral length scale of turbulence (m) </li></ul><ul><li>LOMA Law Of Mass Action </li></ul>
  7. 7. Nomenclature (summary for whole course) <ul><li>M i Molecular weight of chemical species i (kg/mole) </li></ul><ul><li>M Mach number (---) </li></ul><ul><li>m mass (kg) </li></ul><ul><li>Mass flow rate (kg/sec) </li></ul><ul><li>Air mass flow rate (kg/s) </li></ul><ul><li>Fuel mass flow rate (kg/s) </li></ul><ul><li>MEP Mean Effective Pressure (N/m 2 ) </li></ul><ul><li>n Order of reaction (---) </li></ul><ul><li>n Parameter in MEP definition (= 1 for 2-stroke engine, = 2 for 4-stroke) </li></ul><ul><li>n i Number of moles of chemical species i </li></ul><ul><li>N Engine rotational speed (revolutions per second) </li></ul><ul><li>NO Nitric oxide (compound having 1 nitrogen atom and 1 oxygen atom) </li></ul><ul><li>NO x Oxides of Nitrogen (any compound having nitrogen and oxygen atoms) </li></ul><ul><li>O 3 Ozone </li></ul><ul><li>P Pressure (N/m 2 ) </li></ul><ul><li>P a Ambient pressure (N/m 2 ) </li></ul><ul><li>P e Exit pressure (N/m 2 ) </li></ul><ul><li>P ref Reference pressure (101325 N/m 2 ) </li></ul><ul><li>P t Stagnation pressure (N/m 2 ) </li></ul><ul><li>PE Potential Energy (J or J/kg) </li></ul><ul><li>PMEP Pumping Mean Effective Pressure (N/m 2 ) </li></ul><ul><li>Q Heat transfer (J or J/kg) </li></ul><ul><li>Qdot Heat transfer rate (Watts or Watts/kg) </li></ul><ul><li>Q R Fuel heating value (J/kg) </li></ul>
  8. 8. Nomenclature (summary for whole course) <ul><li>R Gas constant =  /M (J/kgK) </li></ul><ul><li>R Flight vehicle range (m) </li></ul><ul><li>r or r c Compression ratio  (V c +V d )/V c (---) </li></ul><ul><li>r e Expansion ratio (---) </li></ul><ul><li>Re L Reynolds number of turbulence  u’L I /  (---) </li></ul><ul><li> Universal gas constant = 8.314 J/moleK </li></ul><ul><li>RPM Revolutions Per Minute (1/min) </li></ul><ul><li>S Entropy (J/K) </li></ul><ul><li>s Entropy per unit mass (J/kgK) </li></ul><ul><li>S L Laminar burning velocity (m/s) </li></ul><ul><li>S T Turbulent burning velocity (m/s) </li></ul><ul><li>ST Specific Thrust </li></ul><ul><li>T Temperature (K) </li></ul><ul><li>TSFC Thrust Specific Fuel Consumption </li></ul><ul><li>T ad Adiabatic Flame Temperature (K) </li></ul><ul><li>T t Stagnation temperature (K) </li></ul><ul><li>T w Wall temperature </li></ul><ul><li>T ∞ Ambient Temperature (K) </li></ul><ul><li>U Internal energy (J) </li></ul><ul><li>u Internal energy per unit mass (J/kg) </li></ul><ul><li>u e Exit velocity (m/s) </li></ul><ul><li>u 1 Flight velocity (m/s) </li></ul><ul><li>u’ Turbulence intensity (m/s) </li></ul><ul><li>UHC Unburned hydrocarbons </li></ul>
  9. 9. Nomenclature (summary for whole course) <ul><li>V Volume (m 3 ) </li></ul><ul><li>V c Clearance volume (m 3 ) </li></ul><ul><li>V d Displacment volume (m 3 ) </li></ul><ul><li>v Specific volume = 1/  (m 3 /kg) </li></ul><ul><li>V Velocity (m/s) </li></ul><ul><li>W Work transfer (J or J/kg) </li></ul><ul><li>Wdot Work transfer rate (Watts or Watts/kg) </li></ul><ul><li>X f Mole fraction fuel in mixture (---) </li></ul><ul><li>X i Mole fraction of chemical species i (---) </li></ul><ul><li>Y f Mass fraction of fuel in mixture (---) </li></ul><ul><li>Z Pre-exponential factor in reaction rate expression </li></ul><ul><li>([moles/m 3 ] 1-n K -a /s) (n = order of reaction) </li></ul><ul><li>z Elevation (m) </li></ul>
  10. 10. Nomenclature (summary for whole course) <ul><li>[ ] i Concentration of species i (moles/m 3 ) </li></ul><ul><li>( )’ Property of fan stream (prime superscript) </li></ul><ul><li>( ) * Property at reference state (M = 1 for all cases considered in this course) </li></ul><ul><li> Thermal diffusivity (m 2 /s) </li></ul><ul><li> Turbofan bypass ratio (ratio of fan to compressor air mass flow rates) (---) </li></ul><ul><li> Non-dimensional activation energy  E/  T (---) </li></ul><ul><li> Cutoff ratio for Diesel cycle </li></ul><ul><li> Flame thickness (m) </li></ul><ul><li>Enthalpy of formation of chemical species i at 298K and 1 atm (J/mole) </li></ul><ul><li>Entropy of chemical species i at temperature T and 1 atm (J/mole K) </li></ul><ul><li> Equivalence ratio (---) </li></ul><ul><li> Gas specific heat ratio  C P /C v (---) </li></ul><ul><li> Efficiency (thermal efficiency unless otherwise noted) </li></ul><ul><li> b Burner (combustor) efficiency for gas turbine engines (---) </li></ul><ul><li> c Compression efficiency for reciprocating engines (---) </li></ul><ul><li> c Compressor efficiency for gas turbine engines (---) </li></ul><ul><li> d Diffuser efficiency for propulsion engines (---) </li></ul><ul><li> e Expansion efficiency for reciprocating engines (---) </li></ul><ul><li> fan Fan efficiency for propulsion engines (---) </li></ul><ul><li> n Nozzle efficiency for propulsion engines (---) </li></ul><ul><li> o Overall efficiency (---) </li></ul><ul><li> p Propulsive efficiency (---) </li></ul><ul><li> t Turbine efficiency for gas turbine engines (---) </li></ul><ul><li> th Thermal efficiency (---) </li></ul><ul><li> v Volumetric efficiency for reciprocating engines (---) </li></ul>
  11. 11. Nomenclature (summary for whole course) <ul><li> Dynamic viscosity (kg/m s) </li></ul><ul><li> Stoichiometric coefficient (---) </li></ul><ul><li> Kinematic viscosity   /  (m 2 /s) </li></ul><ul><li> i Stagnation pressure ratio across component i (i = diffuser (d), compressor (c), burner (b), turbine (t), afterburner (ab) or nozzle (n)) </li></ul><ul><li> r = P 1t /P 1 (“recovery pressure” ratio) = {1 + [(  -1)/2]M 2 }  /(  -1) if  = constant </li></ul><ul><li> Density (kg/m 3 ) </li></ul><ul><li> Torque (N m) </li></ul><ul><li>  = T 4t /T 1 (ratio of maximum allowable turbine inlet temperature to ambient temperature) </li></ul><ul><li> r = T 1t /T 1 (“recovery temperature” ratio) = 1 + [(  -1)/2]M 2 if  = constant </li></ul><ul><li> Overall chemical reaction rate (1/s) </li></ul>
  12. 12. Outline of 1st lecture <ul><li>Introduction to internal combustion engines </li></ul><ul><ul><li>Classification </li></ul></ul><ul><ul><li>Types of cycles - gas turbine, rocket, reciprocating piston gasoline/diesel </li></ul></ul><ul><ul><li>Why internal combustion engines? Why not something else? </li></ul></ul><ul><ul><li>History and evolution </li></ul></ul><ul><ul><li>Things you need to understand before… </li></ul></ul><ul><li>Engineering scrutiny </li></ul><ul><li>Review of basic thermodynamics </li></ul>
  13. 13. Classification of ICEs <ul><li>This course focuses on the design and performance characteristics of internal combustion engines (ICEs) generally used for vehicle (car, aircraft, etc.) propulsion </li></ul><ul><li>Definition of an ICE: a heat engine in which the heat source is a combustible mixture that also serves as the working fluid </li></ul><ul><li>The working fluid in turn is used either to </li></ul><ul><ul><li>Produce shaft work by pushing on a piston or turbine blade that in turn drives a rotating shaft or </li></ul></ul><ul><ul><li>Creates a high-momentum fluid that is used directly for propulsive force </li></ul></ul><ul><li>By this definition, ICEs include gas turbines, supersonic propulsion engines, and chemical rockets (but rockets will not be discussed in this class, take ASTE 470; this course covers only airbreathing ICEs) </li></ul>
  14. 14. What is / is not an ICE? <ul><li>IS </li></ul><ul><li>Gasoline-fueled reciprocating piston engine </li></ul><ul><li>Diesel-fueled reciprocating piston engine </li></ul><ul><li>Gas turbine </li></ul><ul><li>Rocket </li></ul><ul><li>IS NOT </li></ul><ul><li>Steam power plant </li></ul><ul><li>Solar power plant </li></ul><ul><li>Nuclear power plant </li></ul>
  15. 15. What is / is not an ICE?
  16. 16. Basic gas turbine cycle
  17. 17. Turbofan
  18. 18. Solid / liquid rockets Solid Liquid
  19. 19. Reciprocating piston engines (gasoline/diesel)
  20. 20. Premixed vs. non-premixed charge engines
  21. 21. Largest internal combustion engine <ul><li>Wartsila-Sulzer RTA96-C turbocharged two-stroke diesel (application: large container ships) </li></ul><ul><li>Cylinder bore 38”, stroke 98”; 14 cylinder version: weight 2300 tons ; length 89 feet; height 44 feet; max. power 108,920 hp @ 102 rpm; max. torque 5,608,312 ft-lbf @ 102rpm; BMEP 18.5 atm - about right </li></ul>
  22. 22. Smallest internal combustion engine <ul><li>Application: model airplanes Weight: 0.49 oz. Bore: 0.237” = 6.02 mm Stroke: 0.226” = 5.74 mm Displacement: 0.00997 in 3 </li></ul><ul><ul><li>(0.163 cm 3 ) </li></ul></ul><ul><li>RPM: 30,000 </li></ul><ul><li>Power: 3 watts </li></ul><ul><li>Ignition: Glow plug </li></ul><ul><li>BMEP: 0.36 atm (low!) </li></ul><ul><li>Typical fuel: castor oil (10 - 20%), </li></ul><ul><li>nitromethane (0 - 50%), balance </li></ul><ul><li>methanol </li></ul><ul><li>Poor performance </li></ul><ul><ul><li>Low efficiency (< 5%) </li></ul></ul><ul><ul><li>Emissions & noise unacceptable for indoor applications </li></ul></ul>
  23. 23. Why internal combustion engines? <ul><li>Alternatives - external combustion - &quot;steam engine,&quot; &quot;Stirling cycle” </li></ul><ul><li>Heat transfer, gasoline engine </li></ul><ul><ul><li>Heat transfer per unit area (q/A) = k(dT/dx) </li></ul></ul><ul><ul><li>Turbulent mixture inside engine: </li></ul></ul><ul><ul><li>k ≈ 100 k no turbulence ≈ 2.5 W/mK </li></ul></ul><ul><ul><li>dT/dx ≈  T/  x ≈ 1500K / 0.02 m </li></ul></ul><ul><ul><li>q/A ≈  187,500 W/m 2 </li></ul></ul><ul><li>Combustion: q/A =  Y f Q R S T = (10 kg/m 3 ) x 0.067 x (4.5 x 10 7 J/kg) x 2 m/s = 60.3 x 10 6 W/m 2 - 321x higher! </li></ul><ul><li>CONCLUSION: HEAT TRANSFER IS TOO SLOW!!! </li></ul><ul><li>That’s why 10 Boeing 747 engines ≈ large (1 gigawatt) coal-fueled electric power plant </li></ul><ul><li>k = gas thermal conductivity, T = temperature, x = distance, </li></ul><ul><li> = density, Y f = fuel mass fraction, Q R = fuel heating value, </li></ul><ul><li>S T = turbulent flame speed in engine </li></ul>
  24. 24. Why internal combustion engines? <ul><li>Alternatives - electric vehicles </li></ul><ul><ul><li>Why not generate electricity in a large central power plant (  ≈ 40%), distribute to charge batteries to power electric motors (  ≈ 80%)? </li></ul></ul><ul><ul><li>Car battery, lead acid: 100 amp-hours, 12 volts, 20 kg; energy/mass = 100 A * 12 V * 3600 sec / 20 kg = 2 x 10 5 J/kg </li></ul></ul><ul><ul><li>Gasoline (and other hydrocarbons): 4.5 x 10 7 J/kg </li></ul></ul><ul><ul><li>Batteries are heavy ≈ 1000 lbs/gal of gasoline equivalent </li></ul></ul><ul><ul><li>Fuel cell systems better, but still nowhere near gasoline </li></ul></ul><ul><ul><li>&quot;Zero emissions&quot; myth - EVs export pollution </li></ul></ul><ul><ul><li>Environmental cost of battery materials </li></ul></ul><ul><ul><li>Possible advantage: makes smaller, lighter, more streamlined cars acceptable to consumers </li></ul></ul><ul><ul><li>Prediction: eventual conversion of electric vehicles to gasoline power (>100 miles per gallon) </li></ul></ul>
  25. 25. “Zero emission” electric vehicles
  26. 26. Why internal combustion engines? <ul><li>Alternatives - solar </li></ul><ul><ul><li>Arizona, high noon, mid summer: solar flux ≈ 1000 W/m 2 </li></ul></ul><ul><ul><li>Gasoline engine, 20 mi/gal, 60 mi/hr, thermal power = (60 mi/hr / 20 mi/gal) x (6 lb/gal) x (kg / 2.2 lb) x (4.5 x 10 7 J/kg) x (hr / 3600 sec) = 102 kW </li></ul></ul><ul><ul><li>Need ≈ 100 m 2 collector ≈ 32 ft x 32 ft - lots of air drag, what about underpasses, nighttime, bad weather, northern/southern latitudes, etc.? </li></ul></ul>
  27. 27. Why internal combustion engines? <ul><li>Alternatives - nuclear </li></ul><ul><ul><li>Who are we kidding ??? </li></ul></ul><ul><ul><li>Higher energy density though </li></ul></ul><ul><ul><ul><li>U 235 fission: 3.2 x 10 -11 J/atom * (6.02 x 10 23 atom / 0.235 kg) </li></ul></ul></ul><ul><ul><ul><li>= 8.2 x 10 13 J/kg ≈ 2 million x hydrocarbons! </li></ul></ul></ul><ul><ul><ul><li>Radioactive decay much less, but still much higher than </li></ul></ul></ul><ul><ul><ul><li>hydrocarbon fuel </li></ul></ul></ul><ul><li>Moral - hard to beat liquid-fueled internal combustion engines for </li></ul><ul><ul><li>Power/weight & power/volume of engine </li></ul></ul><ul><ul><li>Energy/weight & energy/volume of liquid hydrocarbon fuels </li></ul></ul><ul><ul><li>Distribution & handling convenience of liquids </li></ul></ul><ul><li>Conclusion: IC engines are the worst form of vehicle propulsion, except for all the other forms </li></ul>
  28. 28. History of automotive engines <ul><li>1859 - Oil discovered in Pennsylvania </li></ul><ul><li>1876 - Premixed-charge 4-stroke engine - Otto </li></ul><ul><ul><li>1st practical IC engine </li></ul></ul><ul><ul><li>Power: 2 hp; Weight: 1250 pounds </li></ul></ul><ul><ul><li>Comp. ratio = 4 (knock limited), 14% efficiency (theory 38%) </li></ul></ul><ul><ul><li>Today CR = 8 (still knock limited), 30% efficiency (theory 52%) </li></ul></ul><ul><li>1897 - Nonpremixed-charge engine - Diesel - higher efficiency due to </li></ul><ul><ul><li>Higher compression ratio (no knock problem) </li></ul></ul><ul><ul><li>No throttling loss - use fuel/air ratio to control power </li></ul></ul>
  29. 29. History and evolution <ul><li>1923 - Tetraethyl lead - anti-knock additive </li></ul><ul><ul><li>Enable higher CR in Otto-type engines </li></ul></ul><ul><li>1952 - A. J. Haagen-Smit </li></ul><ul><ul><li>NO + UHC + O 2 + sunlight  NO 2 + O 3 </li></ul></ul><ul><ul><li>(from exhaust) (brown) (irritating) </li></ul></ul><ul><li>UHC = unburned hydrocarbons </li></ul><ul><li>1960s - Emissions regulations </li></ul><ul><ul><li>Detroit won’t believe it </li></ul></ul><ul><ul><li>Initial stop-gap measures - lean mixture, EGR, retard spark </li></ul></ul><ul><ul><li>Poor performance & fuel economy </li></ul></ul><ul><li>1973 & 1979 - The energy crises </li></ul><ul><ul><li>Detroit takes a bath </li></ul></ul>
  30. 30. History and evolution <ul><li>1975 - Catalytic converters, unleaded fuel </li></ul><ul><ul><li>Detroit forced to buy technology </li></ul></ul><ul><ul><li>More “aromatics” (e.g., benzene) in gasoline - high octane but carcinogenic, soot-producing </li></ul></ul><ul><li>1980s - Microcomputer control of engines </li></ul><ul><ul><li>Tailor operation for best emissions, efficiency, ... </li></ul></ul><ul><li>1990s - Reformulated gasoline </li></ul><ul><ul><li>Reduced need for aromatics, cleaner(?) </li></ul></ul><ul><ul><li>... but higher cost, lower miles per gallon </li></ul></ul><ul><ul><li>Now we find MTBE pollutes groundwater!!! </li></ul></ul><ul><ul><li>Alternative “oxygenated” fuel additive - ethanol - very attractive to powerful senators from farm states </li></ul></ul><ul><li>2000’s - hybrid vehicles </li></ul><ul><ul><li>Use small gasoline engine operating at maximum power (most efficient way to operate) or turned off if not needed </li></ul></ul><ul><ul><li>Use generator/batteries/motors to make/store/use surplus power from gasoline engine </li></ul></ul><ul><ul><li>More efficient, but much more equipment on board - not clear if fuel savings justify extra cost </li></ul></ul>
  31. 31. Things you need to understand before ... <ul><li>… you invent the zero-emission, 100 mpg 1000 hp engine, revolutionize the automotive industry and shop for your retirement home on the French Riviera </li></ul><ul><li>Room for improvement - factor of 2 in efficiency </li></ul><ul><ul><li>Ideal Otto cycle engine with CR = 8: 52% </li></ul></ul><ul><ul><li>Real engine: 25 - 30% </li></ul></ul><ul><ul><li>Differences because of </li></ul></ul><ul><ul><ul><li>Throttling losses </li></ul></ul></ul><ul><ul><ul><li>Heat losses </li></ul></ul></ul><ul><ul><ul><li>Friction losses </li></ul></ul></ul><ul><ul><ul><li>Slow burning </li></ul></ul></ul><ul><ul><ul><li>Incomplete combustion is a very minor effect </li></ul></ul></ul>
  32. 32. Things you need to understand before ... <ul><li>Room for improvement - infinite in pollutants </li></ul><ul><ul><li>Pollutants are a non-equilibrium effect </li></ul></ul><ul><ul><ul><li>Burn: Fuel + O 2 + N 2  H 2 O + CO 2 + N 2 + CO + UHC + NO </li></ul></ul></ul><ul><ul><ul><li> OK OK OK Bad Bad Bad </li></ul></ul></ul><ul><ul><ul><li>Expand: CO + UHC + NO “frozen” at high levels </li></ul></ul></ul><ul><ul><ul><li>With slow expansion, no heat loss: </li></ul></ul></ul><ul><ul><ul><ul><li>CO + UHC + NO  H 2 O + CO 2 + N 2 </li></ul></ul></ul></ul><ul><ul><ul><li>...but how to slow the expansion and eliminate heat loss? </li></ul></ul></ul><ul><ul><li>Worst problems: cold start, transients, old or out-of-tune vehicles - 90% of pollution generated by 10% of vehicles </li></ul></ul>
  33. 33. Things you need to understand before ... <ul><li>Room for improvement - very little in power </li></ul><ul><ul><li>IC engines are air processors </li></ul></ul><ul><ul><ul><li>Fuel takes up little space </li></ul></ul></ul><ul><ul><ul><li>Air flow = power </li></ul></ul></ul><ul><ul><ul><li>Limitation on air flow due to </li></ul></ul></ul><ul><ul><ul><ul><li>“Choked” flow past intake valves </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Friction loss, mechanical strength - limits RPM </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Slow burn </li></ul></ul></ul></ul><ul><li>Majority of power is used to overcome air resistance - smaller, more aerodynamic vehicles beneficial </li></ul>
  34. 34. “ Engineering scrutiny” 1. Smoke test <ul><li>Equivalent in building electronics: turn the power switch on and see if it smokes </li></ul><ul><li>For analysis: check the units - this will catch 90% of your mistakes </li></ul><ul><li>Example: I just derived the ideal gas law as Pv = R/T, obviously units are wrong </li></ul><ul><li>Other rules </li></ul><ul><ul><li>Anything inside a square root, cube root, etc. must have units that is a square (e.g. m 2 /sec 2 ) or cube, etc. </li></ul></ul><ul><ul><li>Anything inside a log, exponent, trigonometric function, etc., must be dimensionless </li></ul></ul><ul><ul><li>Any two quantities that are added together must have the same units </li></ul></ul>
  35. 35. “ Engineering scrutiny” 2. Function test <ul><li>Equivalent in building electronics: does the device do what it was designed it to do, e.g. the red light blinks when I flip switch on, the bell rings when I push the button, etc. </li></ul><ul><li>For analysis: does the result gives sensible predictions? </li></ul><ul><li>Determine if sign (+ or -) of result is reasonable, e.g. if predicted absolute temperature is –72 K, obviously it’s wrong </li></ul><ul><li>Determine whether what happens to y as x goes up or down is reasonable or not. For example, in the ideal gas law, Pv = RT: </li></ul><ul><ul><li>At fixed v, as T increases then P increases – reasonable </li></ul></ul><ul><ul><li>At fixed T, as v increases then P decreases – reasonable </li></ul></ul><ul><ul><li>Etc. </li></ul></ul>
  36. 36. “ Engineering scrutiny” 2. Function test <ul><li>Determine what happens in the limit where x goes to special values, e.g. 0, 1, ∞ as appropriate </li></ul><ul><li>Example: entropy change (S 2 - S 1 ) of an ideal gas </li></ul><ul><ul><li>For T 2 = T 1 and P 2 = P 1 (no change in state) then S 2 – S 1 = 0 or S 2 = S 1 </li></ul></ul><ul><ul><li>Limit of S 2 = S 1 , the allowable changes in state are </li></ul></ul><ul><ul><li>which is the isentropic relation for ideal gas with constant specific heats </li></ul></ul>
  37. 37. “ Engineering scrutiny” 3. Performance test <ul><li>Equivalent in building electronics: how fast, how accurate, etc. is the device </li></ul><ul><li>For analysis: how accurate is the result? </li></ul><ul><li>Need to compare result to something else, e.g. a “careful” experiment, more sophisticated analysis, trusted published result, etc. </li></ul><ul><li>Example, I derived the ideal gas law and predicted Pv = 7RT - passes smoke and function tests, but fails the performance test miserably (by a factor of 7) </li></ul>
  38. 38. Review of thermodynamics (1) <ul><li>Almost everything we do in this course will be analyzed with </li></ul><ul><ul><li>1st Law of Thermodynamics (conservation of energy) - “you can’t win”) </li></ul></ul><ul><ul><li>2nd Law of Thermodynamics - “you can’t break even”) </li></ul></ul><ul><ul><li>Equation of state (usually ideal gas law) - “you can’t even choose your poison” </li></ul></ul><ul><ul><li>Conservation of mass </li></ul></ul><ul><ul><li>Conservation of momentum </li></ul></ul>
  39. 39. Review of thermodynamics (2) <ul><li>1st Law of Thermodynamics for a control mass , i.e. a fixed mass of material (but generally changing volume) </li></ul><ul><ul><li>dE =  Q -  W </li></ul></ul><ul><ul><li>E = energy contained by the mass - a property of the mass </li></ul></ul><ul><ul><li>Q = heat transfer to the mass </li></ul></ul><ul><ul><li>W = work transfer to or from the mass (see below) </li></ul></ul><ul><ul><li>Control mass form useful for fixed mass, e.g. gas in a piston/cylinder </li></ul></ul><ul><ul><li>Each term has units of Joules </li></ul></ul><ul><ul><li>Work transfer is generally defined as positive if out of the control mass, in which case - sign applies, i.e. dE =  Q -  W ; If work is defined as positive into system then dE =  Q +  W </li></ul></ul><ul><ul><li>Heat and work are NOT properties of the mass, they are energy transfers to/from the mass; a mass does not contain heat or work but it does contain energy (E) </li></ul></ul>
  40. 40. Review of thermo (2) - heat & work <ul><li>Heat and work transfer depend on the path, but the internal energy of a substance at a given state doesn’t depend on how you got to that state; for example, simple compressible substances exchange work with their surroundings according to  W = + PdV (+ if work is defined as positive out of control mass) </li></ul><ul><li>For example in the figure below, paths A & B have different ∫ PdV and thus different work transfers, even though the initial state 1 and final state 2 are the same for both </li></ul>
  41. 41. Review of thermo (3) - heat & work <ul><li>What is the difference between heat and work? Why do we need to consider them separately? </li></ul><ul><ul><li>Heat transfer is disorganized energy transfer on the microscopic (molecular) scale and has entropy transfer associated with it </li></ul></ul><ul><ul><li>Work transfer is organized energy transfer which may be at either the microscopic scale or macroscopic scale and has no entropy transfer associated with it </li></ul></ul><ul><li>The energy of the substance (E) consists of </li></ul><ul><ul><li>Macroscopic kinetic energy (KE = 1/2 m v 2 ) </li></ul></ul><ul><ul><li>Macroscopic potential energy (PE = mgz) </li></ul></ul><ul><ul><li>Microscopic internal energy (U) (which consists of both kinetic (thermal) and potential (chemical bonding) energy, but we lump them together since we can’t see it them separately, only their effect at macroscopic scales </li></ul></ul><ul><li>If PE is due to elevation change (z) and work transfer is only PdV work, then the first law can be written as </li></ul><ul><li>dU + m V d V + mgdz =  Q - PdV </li></ul><ul><li>V = velocity, V = volume, m = mass, g = gravity </li></ul>
  42. 42. Review of thermo (4) - types of energy
  43. 43. Review of thermo (5) - 1st law for CV <ul><li>1st Law of Thermodynamics for a control volume , a fixed volume in space that may have mass flowing in or out (opposite of control mass, which has fixed mass but possibly changing volume): </li></ul><ul><ul><li>E = energy within control volume = U + KE + PE as before </li></ul></ul><ul><ul><li>Qdot, Wdot = rates of heat & work transfer in or out (Watts) </li></ul></ul><ul><ul><li>Subscript “in” refers to conditions at inlet(s) of mass, “out” to outlet(s) of mass </li></ul></ul><ul><ul><li>mdot = mass flow rate in or out of the control volume </li></ul></ul><ul><ul><li>h  u + Pv = enthalpy </li></ul></ul><ul><ul><li>Note h, u & v are lower case, i.e. per unit mass; h = H/M, u = U/M, V = v/M, etc.; upper case means total for all the mass (not per unit mass) </li></ul></ul><ul><ul><li>v = velocity, thus v 2 /2 is the KE term </li></ul></ul><ul><ul><li>g = acceleration of gravity, z = elevation at inlet or outlet, thus gz is the PE term </li></ul></ul><ul><li>Control volume form useful for fixed volume device, e.g. gas turbine </li></ul><ul><li>Most commonly written as a rate equation (as above) </li></ul>
  44. 44. Review of thermo (6) - 1st law for CV <ul><li>Note that the Control Volume (CV) form of the 1st Law looks almost the same as the Control Mass (CM) form with the addition of mdot*(h+ v 2 /2+gz) terms that represent the flux of energy in/out of the CV that is carried with the mass flowing in/out of the CV </li></ul><ul><li>The only difference between the CV and CM forms that isn’t “obvious” is the replacement of u (internal energy) with h = u + Pv </li></ul><ul><li>Where did the extra Pv terms come from? The flow work needed to push mass into the CV or that you get back when mass leaves the CV </li></ul>
  45. 45. Review of thermo (7) - steady flow <ul><li>If the system is steady then by definition </li></ul><ul><ul><li>d[ ]/dt = 0 for all [ properties ], i.e. E CV , M CV , h, v, z </li></ul></ul><ul><ul><li>All fluxes , i.e. Qdot, Wdot, mdot are constant (not necessarily zero) </li></ul></ul><ul><ul><li>Sum of mass flows in = sum of all mass flows out (or mdot in = mdot out for a single-inlet, single-outlet system (if we didn’t have this condition then the mass of the system, which is a property of the system, would not be constant) </li></ul></ul><ul><ul><li>In this case ( steady-state, steady flow ) the 1st Law for a CV is </li></ul></ul>
  46. 46. Review of thermo (8) - conservation of mass <ul><li>For a control mass </li></ul><ul><li>m = mass of control mass = constant (wasn’t that easy?) </li></ul><ul><li>For a control volume </li></ul><ul><li>(what accumulates = what goes in - what goes out) </li></ul>
  47. 47. Review of thermodynamics (9) - 2nd law <ul><li>The 2nd Law of Thermdynamics states </li></ul><ul><ul><li>The entropy (S) of an isolated system always increases or remains the same </li></ul></ul><ul><li>By combining </li></ul><ul><ul><li>2nd law </li></ul></ul><ul><ul><li>1st Law </li></ul></ul><ul><ul><li>State postulate - for a system of fixed chemical composition, 2 independent properties completely specify the state of the system </li></ul></ul><ul><ul><li>The principle that entropy is a property of the system, so is additive </li></ul></ul><ul><li>“ it can be shown” that </li></ul><ul><ul><li>Tds = du + Pdv </li></ul></ul><ul><ul><li>Tds = dh - vdP </li></ul></ul><ul><li>These are called the Gibbs equations , which relate entropy to other thermodynamic properties (e.g. u, P, v, h, T) </li></ul>
  48. 48. Review of thermodynamics (10) - 2nd law <ul><li>From the Gibbs equations, “it can be shown” for a control mass </li></ul><ul><ul><li>= sign applies for a reversible (idealized; best possible) process </li></ul></ul><ul><ul><li>> applies if irreversible (reality) </li></ul></ul><ul><ul><li>T is the temperature on the control mass at the location where the heat is transferred to/from the CM </li></ul></ul><ul><li>And for a control volume </li></ul><ul><li>S CV is the entropy of the control volume; if steady, dS CV /dt = 0 </li></ul><ul><li>These equations are the primary way we apply the 2nd law to the energy conversion systems discussed in this class </li></ul><ul><li>Work doesn’t appear anywhere near the 2nd law - why? Because there is NO entropy transfer associated with work transfer, whereas there IS entropy transfer associated with heat transfer </li></ul>
  49. 49. Review of thermo (11) - equations of state <ul><li>We’ll only consider 2 equations of state in this course </li></ul><ul><ul><li>Ideal gas - P =  RT (P = pressure,  = 1/v = density, T = temperature (absolute), R = gas constant =  /M mix ,  = universal gas constant (8.314 J/mole-K), M mix = molecular weight of gas mixture) </li></ul></ul><ul><ul><li>Incompressible fluid -  = constant </li></ul></ul><ul><li>Definition of specific heats (any substance) </li></ul><ul><li>For ideal gases - h = h(T) and u = u(T) only (h and u depend only on temperature, not pressure, volume, etc.), thus for ideal gases </li></ul><ul><li>From dh = C P dT, du = C v dT, the Gibbs equations and P =  RT we can show that ( again for an ideal gas only ) </li></ul>
  50. 50. Review of thermo (12) - isentropic relations <ul><li>Recall from the 2nd Law, dS ≥  Q/T </li></ul><ul><li>If a process is reversible dS =  Q/T , and if furthermore the process is adiabatic  Q = 0 thus dS = 0 or S 2 - S 1 = 0 ( isentropic process ) then the previous relations for S 2 - S 1 can be written as </li></ul><ul><li>Isentropic processes are our favorite model for compression and expansion in engines </li></ul><ul><li>But remember these relations are valid only for </li></ul><ul><ul><li>Ideal gas </li></ul></ul><ul><ul><li>Constant specific heats (C P , C V ) (note that since for an ideal gas C P = C v + R and R is a constant, if C P is constant then C v is also and vice versa) </li></ul></ul><ul><ul><li>Reversible adiabatic (thus isentropic) process </li></ul></ul><ul><ul><li>(Still very useful despite all these restrictions…) </li></ul></ul>