A Framework Concept for Profiling Researchers on Twitter using the Web of Data

677 views

Published on

Based upon findings and results from our recent research we propose a generic frame-
work concept for researcher profiling with appliance to the areas of ”Science 2.0” and ”Research 2.0”. Intensive growth of users in social networks, such as Twitter generated a vast amount of information. It has been shown in many previous works that social networks users produce valuable content for profiling and recommendations. Our research focuses on identifying and locating experts for specific research area or topic. In our approach we apply semantic technologies like (RDF, SPARQL), common vocabularies (SIOC , FOAF, MOAT, Tag Ontology) and Linked Data (GeoNames , COLINDA).

Published in: Technology, Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
677
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

A Framework Concept for Profiling Researchers on Twitter using the Web of Data

  1. 1. ELIS – Multimedia LabLaurens De Vocht, Erik Mannens, Rik Van de Walle (Ghent University – iMinds)Selver Softic, Martin Ebner (Graz University of Technology)A Framework Concept for Profiling Researcherson Twitter using the Web of Data
  2. 2. 2/18ELIS – Multimedia LabA Framework Concept for Profiling Researchers on Twitter using the Web of DataLaurens De Vocht09-05-20131. Introduction2. Use Case3. Implementation4. Evaluation5. Aligning Multiple Resources6. Conclusions & Future WorkOverview
  3. 3. 3/18ELIS – Multimedia LabA Framework Concept for Profiling Researchers on Twitter using the Web of DataLaurens De Vocht09-05-2013Introduction (1/3)Who has scientific informationrelevant for me?Web users generate a hugeunstructured information flow?
  4. 4. 4/18ELIS – Multimedia LabA Framework Concept for Profiling Researchers on Twitter using the Web of DataLaurens De Vocht09-05-2013Introduction: Research 2.0 (2/3)Digital Libraries GoogleSocial MediaOnline Events andAnnouncements?Web of Data
  5. 5. 5/18ELIS – Multimedia LabA Framework Concept for Profiling Researchers on Twitter using the Web of DataLaurens De Vocht09-05-2013Introduction: Facilitate Research Collaboration (3/3)
  6. 6. 6/18ELIS – Multimedia LabA Framework Concept for Profiling Researchers on Twitter using the Web of DataLaurens De Vocht09-05-2013Use Case: OverviewConnecting researchers based on shared scientific events (conferences)
  7. 7. 7/18ELIS – Multimedia LabA Framework Concept for Profiling Researchers on Twitter using the Web of DataLaurens De Vocht09-05-2013Use Case: ExampleBob is giving an interesting presentationat #ISEMANTICS2012 in GrazWondering how Graz people aredealing with #semantics…LinkedDataEntitiesExplicitConnectionImplicitConnection
  8. 8. 8/18ELIS – Multimedia LabA Framework Concept for Profiling Researchers on Twitter using the Web of DataLaurens De Vocht09-05-2013ImplementationCommonly usedOntologiese.g. FOAF, SIOCAnnotated Data from SocialNetworksLinked Open DataConnect People and ResourcesConferencesLocationsTags, Posts,MentionsGeneral Concepts and Facts
  9. 9. 9/18ELIS – Multimedia LabA Framework Concept for Profiling Researchers on Twitter using the Web of DataLaurens De Vocht09-05-2013Implementation: Architecture
  10. 10. 10/18ELIS – Multimedia LabA Framework Concept for Profiling Researchers on Twitter using the Web of DataLaurens De Vocht09-05-2013Implementation: Match rating between two users
  11. 11. 11/18ELIS – Multimedia LabA Framework Concept for Profiling Researchers on Twitter using the Web of DataLaurens De Vocht09-05-2013Evaluation‣ get User Profile‣ find People or Events given a User Profile‣ register a new User Profile‣ get Event DetailsService for efficient discovery of people and events
  12. 12. 12/18ELIS – Multimedia LabA Framework Concept for Profiling Researchers on Twitter using the Web of DataLaurens De Vocht09-05-2013Evaluation: User Profile
  13. 13. 13/18ELIS – Multimedia LabA Framework Concept for Profiling Researchers on Twitter using the Web of DataLaurens De Vocht09-05-2013Evaluation: Find People
  14. 14. 14/18ELIS – Multimedia LabA Framework Concept for Profiling Researchers on Twitter using the Web of DataLaurens De Vocht09-05-2013Evaluation: Find Events
  15. 15. 15/18ELIS – Multimedia LabA Framework Concept for Profiling Researchers on Twitter using the Web of DataLaurens De Vocht09-05-2013How to combine information from multiple sources?More connections from more sources would lead to more reliabilityaccording to qualitative user evaluation. (De Vocht et al., 2011)
  16. 16. 16/18ELIS – Multimedia LabA Framework Concept for Profiling Researchers on Twitter using the Web of DataLaurens De Vocht09-05-2013Aligning Resources: ExampleLinkedDataEntitiesMore Connections!
  17. 17. 17/18ELIS – Multimedia LabA Framework Concept for Profiling Researchers on Twitter using the Web of DataLaurens De Vocht09-05-2013Conclusions & Future WorkFuture WorkMeasure precision and recall of presented resultsAlign more resources to obtain more reliability and information qualityIntegrate user profile and context to improve matching and interlinking.ConclusionsEnrichment of Social Media Data with Linked data:Allows semantically motivated comparison between resourcesImplemented framework with current state-of-the art technologiesPossible to discover connections between resources in big datasets
  18. 18. 18/18ELIS – Multimedia LabA Framework Concept for Profiling Researchers on Twitter using the Web of DataLaurens De Vocht09-05-2013Some ReferencesDe Vocht, L., Van Deursen, D., Mannens, E., & Van de Walle, R. (2012). ASemantic Approach to Cross-Disciplinary Research Collaboration. InternationalJournal Of Emerging Technologies In Learning (IJET), 7(S2), pages 22 - 30.Laurens De Vocht, Selver Softic, Martin Ebner, and Herbert Mühlburger. 2011.Semantically driven social data aggregation interfaces for Research 2.0.In Proceedings of the 11th International Conference on Knowledge Managementand Knowledge Technologies (i-KNOW 11), Article 43, 9 pages.laurens.devocht@ugent.be@laurens_d_vContact

×