• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Integrated Forest Biorefinery - Biomass utilisation at the Follum mill

Integrated Forest Biorefinery - Biomass utilisation at the Follum mill



By producing multiple products, a Integrated Forest Biorefinery (IFB) takes advantage of the various components in the biomass and their intermediates maximising the value derived from the biomass ...

By producing multiple products, a Integrated Forest Biorefinery (IFB) takes advantage of the various components in the biomass and their intermediates maximising the value derived from the biomass feedstock. These can be grouped into:
BioMaterials, BioChemicals, BioFuels and BioEnergy.



Total Views
Views on SlideShare
Embed Views



1 Embed 1

http://www.slashdocs.com 1



Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
Post Comment
Edit your comment

    Integrated Forest Biorefinery - Biomass utilisation at the Follum mill Integrated Forest Biorefinery - Biomass utilisation at the Follum mill Presentation Transcript

    • Various Integrated Forest Biorefinery (IFB) options… and suitable technologies for the  future Follum mill and it’s partners? 2011‐09‐21 ® Follum mill Lasse Blom (Eigil Søndegård & Henrik Plesner)®
    • Table of Content ▪ Introduction  – Why we do the things we do? ▪ Background  – What is done before? ▪ The biomass resources  – The sobering facts! ▪ Bio‐business options at Follum –New and “old” ideas!®
    • Introduction – Why we do the things we do?®
    • Why we do the things we do? EU Commission 2050 roadmap to a low carbon economy  where the target is 80% reduction (100%=1990). We will not reach the  EU goal in 2050 if we  continuous in the same pace as today with  GHG reductions!!!! Target® What about Norway’s contribution?
    • Feedstock resources in Norway ▪ Wood resources in Norway – Growing stock: 765 mill. m3 – Annual growth : 28 mill. m3 – Annual logging: 10 mill. m3 ▪ Annual harvesting today is 16 TWh.  Total biomass harvesting is estimated  to be approx 30 – 35 TWh (NVE,  NINA), but competing usage will  queue up. ▪ As an example; The conversion to  biofuels will at its best be 15 TWh if all  biomass is utilised for biofuels solely,  while the need is 75 TWh (SSB) in the  transport sector. This means that we  will only cover 20% of the transport  fuel needed. ▪ We have too scare biomass resources in Norway to “save the world”.® “We need to find the right way to utilising our biomass sustainable!”
    • Background  – What is done before?®
    • BioDiesel – Xynergo – not an option yet…! ▪ BioDiesel from biomass is still not  technically fully developed BioDiesel left  ▪ Poor energy efficiency for biodiesel out in the  ▪ Market uncertainties cold…! ▪ Authority uncertainties ‐ if it had to  really on this to be implemented? ▪ Needed large production volume to  be economical feasible, and this  again was dependent on location and the source of available biomass ▪ Openness, honesty and co‐ operation is key for project success®
    • BioOil – Xynergo – not an option yet…! ▪ Fast pyrolysis oil has many undesirable  properties: – High water content: 15‐30% – High O content: 35‐40% – High acid: pH=2.5, TAN>100 mg KOH/g oil – Unstable (phase separation, reactions) – Low HHV: 16‐19 MJ/kg – Catalytic methods can be used to improve  these properties for the bio‐oil ▪ The quality of bio‐oil is today not good enough for direct  pure bio‐oil usage ▪ Market uncertainties, small volumes ▪ The bio‐oil need to be hydrolysed to be usable for further processing at refineries,  and will therefore become expensive.® What now then?
    • The PROFIT‐Project Introduction ▪ “PROFITable bioenergy and paper production through innovative raw  material handling and process integration” (PROFIT‐Project)  – Sub‐project 1. Raw materials logistics – Sub‐project 2. Improved paper production – Sub‐project 3. Bioenergy production and Process Integration  ▪ The industry and R&D partners are: Norske Skog, Viken Skog, PFI, Chalmers,  NTNU, Bio Varme, Follum Industripark, Andritz og Moelven. ▪ The project main goal: – The project aims at establishing innovative systems and technological solutions for  integrated raw material and heat handling in a paper mill, waste combustion plant,  pellet plant and a synthetic biofuel plant, opening for: • Considerable increase in wood logging for bioenergy purposes, amounting to a  minimum of 0.4 TWh/year, only in the Follum case, however with considerably  higher potentials • Development of a new, innovative fractionation system for chip handling,  allowing for a more optimal use of the wood raw material • Cost‐effective production of pellets • Cost‐effective production of synthetic biodiesel • A step‐change in critical pulp properties (e.g. strength, variation, optical  properties, energy consumption) ensuring more uniform and improved TMP pulp ® quality.
    • The PROFIT‐Project progress… when looking back! [Today] Biomass Integrated Gasification Combined Cycle (BIGCC) ”A rugged road!...” [2011, May] – Gasification [2011, Feb] – Bio‐oil (pyrolysis) [2010, May] – Torrefaction pellets [2010, Mar] – Wood pellets®
    • The PROFIT‐Project progress… when looking back!2010 Mar Wood pellets: 2010 May Torrefaction pellets: 2011 Feb Bio‐oil (pyrolysis): Pros: Pros: Pros: ‐ Most suitable for small ‐ Higher energy density than wood  ‐ Good logistics, but may not be worth it.[START] markets and therefore also pellets (30%). Cons: suitable for smaller local industries. ‐ Good for pre‐treatment for the ‐ The bio‐oil need to be hydrolysed to be Cons: Entrained Flow Gasifier (EFG). usable for further processing at refineries,  ‐ Market uncertainties Cons: and will therefore become expensive. ‐ The PROFIT SP1 concluded that ‐ Market uncertainties. ‐ The quality of bio‐oil is today not good wood pellets would not be suitable ‐ The energy densification may in some enough for direct  pure bio‐oil usage. for the Follum mill!!! cases not be economical valid. ‐ We would like to use the biomass  ‐ Some issues with spontaneous 2011 May ourselves for producing special ignition when stockpiled. products. ‐ A “hype wave” product (?) Gasification: ‐ Torrefied material gives much dust for Pros: all the gasification types, except the  ‐ Numerous usage options. EFG. ‐ Flexible feed and products. ‐ Circulating Fluidized Bed the best  Biomass Integrated Gasification  option for Follum. Combined Cycle (BIGCC): 2011 Jul Cons: ‐ High investment costs, but the chosen • Steam – for the mill technology will make it very flexible system • Heat – for the district heating • Electricity – for the grid ® • Methane, Hydrogen &/or Methanol – for the  transport sector
    • The Biomass Resources – The sobering facts®
    • The Biomass Resources – the sobering facts ▪ Forests comprise about @80% of the world’s biomass ▪ Biomass supply @14% of the world’s energy needs ▪ Depending on the energy source, the markets vary: – Fossil fuels => World market – Electricity => Region market – Biofuel => District market – District heating => City market ▪ Biomass is often scattered in small “local reservoirs” and is  not suitable for a global market ▪ Biomass fuel prices can vary significantly between  countries, due to different national policy instruments ▪ Logistics are one of the major cost saving potentials ▪ Biorefinery needs to be close to the source of biomass®
    • Raw materials availability at Follum ▪ Investigate feedstock resources in the Follum mill  area, with main focus on forest residues (GROT)  has been performed ay rw No km 85  Hønefoss… in the heart of  Biomass origin at Follum the Norwegian forests!®
    • Biomass inventory around the Follum mill Total annual effect available biomass around Follum mill (upto 85 km) 16 14 12 Total Effect (MW) 10 8 6 12.7 12.8 ≈ 55 MW 8.9 4 8.0 6.4 2 1.5 2.5 2.0 1.1 0 ru s e e T flis e s n li rk O tr li irk ra fu rrf gf el r vi R ig tte ov Tø Sa e H G gs g rk Ku Bi er in vi En ivn se® as R M
    • Bio‐businesses options at Follum – New and “old” ideas!®
    • Product portfolio development at the Follum mill 400 350 ? 300 Coated Magazine 2501000 Tonn 200 Improved Newsprint Forest BioRefineries and  Energy Conversion techn.: 150 • Wood pellets 100 Standard Newsprint • Torrefaction • District Heating 50 • Pyrolysis oil • Gasification 0 • Extracting “products” 0 1 2 3 4 5 6 7 8 9 OP 10 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 11 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 . • Steam Turbines Newsprint Sulphitepaper SC UMI MFC Book • Heat Pumps • Etc.®
    • Integrated Forest Biorefineries (IFB’s): ▪ Definition: By producing multiple products, a Integrated Forest Biorefinery (IFB)  takes advantage of the various components in the biomass and their intermediates  maximising the value derived from the biomass feedstock. These can be grouped  into: BioMaterials BioChemicals ‐ Paper ‐ Nanofibres ‐ Proteins ‐ Glycerine. ‐ Fibers ‐ Textile ‐ Lignin ‐ Acetone ‐ Composites ‐ PHA IFB ‐ Turpentine ‐ Fertilizers ‐ Polymers ‐ etc ‐ Gasification ‐ etc BioFuels BioEnergy ‐ BioGas ‐ BioButanol ‐ Chips ‐ Hydrolysis. ‐ BioDiesel ‐ BioMethanol ‐ Pellets ‐ Fuel Cells ‐ BioEthanol ‐ BioSNG ‐ Torrefaction ‐ BioOil ‐ BioHydrogen ‐ etc ‐ Combustion ‐ etc®
    • How to get successful BioBusinesses – with  Utility and Product Integrations ® BioMaterials BioChemicals BioFuels BioEnergy Knowledge + Solutions      =        Environment + BioBusiness®
    • What decide the technology options? ▪ The biorefinery technology chosen is dependent on both  upstream and downstream external influences and internal  needs Resources Market Raw material  Integrated  Post  and pre‐ Forest  treatment treatment Biorefinery Follum mill and ® co‐companies
    • What is the best biorefinery pathway? ▪ “It’s time to frame and tame the activities!” … we are in the forests of opportunities! Biogas Combustion Pellets (wood, torrefaction) BioButanol Gasification ? Steam Turbines BioOil District Heating BioDiesel®
    • Strategic‐ and Classical Process Design Number of design options ▪ Product portfolio Design Ide 1 a i ▪ Strategic Process Design Product portfolio design Timeline np ut Very early  stage selection – Generate product  alternatives (matrix) out ng  2 Early  – Very early stage design eni e stage selection Scr – Early stage design Strategic Process Design Classical Process Design ▪ Classical Process Design Feasibility study – Feasibility‐, main‐ and  Pre‐study engineering design 3 Main‐study – Evaluation, ROI, ROCE and  Engineering IRR.®
    • Option(s) selected from a technical pool ▪ A continuous loop – Screening becomes very site specific! R&D? 2 Combustion Densification (pelletising) 1 Pilot? BioGas (Anaerobic digestion) BioEthanol from cellulose Demo? g Harvesting lignin in g in ss FBR groups: lp ) e 2% Carbonisation (slow pyrolysis) ) l pu ) oc Status: BioMaterials / (3 r 0% p 8% a Com? R&D / BioChemicals / ng (1 n ic (5 e r SynGas (Gasification of biomass) ) No.: Ideas / processes: Discussions / comments: C p pi ha Demo / BioFuels / pa & ul Glucomannan extraction ec ,B p ed Com BioEnergy om al (A er GHG emission comments: ic & ECT rm ov s BioOil (Fast/flash Pyrolysis) m ie he ec he Time r it -R -C -T io BioDiesel Pr 1 2 3 1-0 Bio pellets (wood pellets) - Sale of pellets to Central Europe coal plants or domestic market. - Pellets gives more CO2 savings in stationary CHP plants than - Using the existing TMP1 refiner as prefiltration to a pelletizing production of bio-fuel. BioMethanol machine - It is said that the coal fire plant can burn 20% mixture of wood pellets without doing large rebuilds. Harvesting of Hemicellulose Com BioEnergy X X A The well-to-gate emissions for wood fuel handling is 10 kg Bio‐oil applications CO2/MWh [9]. Harvesting PHA As an average, the CO2 emission reduction for wood is 336 kg CO2/MWh if coal power plant is the marginal user. BioButanol 1-1 Torrefied pellets - Torrefied pellets can substitute coal almost 100%. Demo BioEnergy X X A It is expected that the CO2 emission reduction is the same as Supercritical Gasification for the wood pellets (336 kg CO2/MWh). BioHydrogen 1-2 Charcoal pellets - A product that has various applications; (1) it can substitute Active Same as above. Carbon for water purification, (2) it can be used as soil improvement (ref CenBio and Michael J.Atal). Demo BioEnergy X X X B R&D Pilot/Demonstration Commercial -The biomass source can also be revenue of waste streams from TMP. 1-3 Steam pellets - Steam explosions of chips as pre-treatment can be an option. Same as above. Positive is that it is a fast process, but it uses higher pressure than our Developing stages surplus LP steam (Com) BioEnergy X X B - Plant at Kongsvinger (Norway) - still some operating challenges. 1-4 Lignin pellets - Lignin pellets (wood pellets+lignin), better energy yield than torrefaction, DME, Ethanol and Methane. - Can only be made when lignin is available Demo BioEnergy X B In this case. The lignin will boost the energy content of the pellets with 20% (?), which then will give a CO2 reduction of 270 kg CO2/MWh if coal is the marginal user. R&D!New ideas! 2-0 Enhance the steam system - Ongoing separate activity in the PROFIT project (Energy Conversion Technologies) - Usage of the TMP de-compressors? - With upto 100 MWel available of, we will be self sufficient with Com BioEnergy X X X B As an overall figure, the CO2 reduction from thermal energy is around 225 kg CO2/MWh. Pilot! 2-1 Steam turbines electricity at Follum. - Todays steam turbine is too large (history dependent) - ÅF report available If the electricity produced will substitute electricity from coal, the CO2 reduction will be 770 - 31 = 740 kg CO2/MWh, but if Demo! Com BioEnergy X X X B electricity is produced from NG with CCS in 2050, the reduction will only be 120 - 99 = 20 kg CO2/MWh. [9] Com! 2-2 Condense turbine on the surplus LP steam Payback in 4-5 years Com BioEnergy X X X B Normally, a condense turbine is used used on surplus steam, which means that the energy produced from this is CO2 neutral. This again means that the CO2 reduction is 770 kg Com CO2/MWh if the marginal electricity producer is coal. If natural gas is the marginal producer, the reduction is 345 kg CO2/MWh. 2-3 Pressure Release Valve (PRV) options Many mills are today uses PRVs - DifGen usage Com BioEnergy X X X B 3 - Steam Turbine 3-0 Heat Pump technology -The mapping during the pinch analysis will identify the surplus heat The CO2 emission reduction is all dependent on the potensial at the mill application. This can varies all from 100% reduction for coal as - Wich technology uses Akershus Energi to recover their heat in the marginal producers (770 kg CO2/MWh) down to the efficiency Com BioEnergy X X X B waste streams? of the HP based on the marginal producer. If natural gas in 2020, this will be around 345*0.33=114 kg CO2/MWh. 4-0 Absorption Heat Pump - Direct AHP like a scrubber can be used for heating of the water at Same as above.Old ideas! the WTP - AHP Coolers are also available Com BioEnergy X X X B - This can be the heat recovery from the furnace flue gas, or the heat from discharge process pipes 5-0 Gasification - Poor energy conversion efficiency today, but can be an initial start for By gasification, 1 kg of fossil fuel can be replaced using about a future SNG conversion plant producing various products? 3.5 kg of biomass. - There are many technologies available Com BioEnergy X X A - A process integration of electricity production and District Heating R&D (CHP) will give an efficiency of >85% Pilot ® Demo
    • BioBusinesses at Follum… with its synergies ▪ Process Integration and industry synergies Environment Products CO2 emissions Feedstock Absolute vs. Specific CO2 emissions 43 0.6 Specific (tonnes/prod.tonnes) 42 0.5 Absolute (Mega tonnes/y) 41 0.4 40 39 0.3 38 0.2 37 0.1 36 35 0 1990 2000 2007 2008 Customers Transport/Distribution: Electricity prices 700 Spot Price Market in Norway (NOK/MWh) Partners 600 500 Sales/ NOK/MWh 400 300 200 Marketing 100® 0 Authorities/ 08 Nov 09 Nov 10 Nov 08 Jul 09 Jul 10 Jul 08 May 09 May 10 May 08 Jan 09 Jan 10 Jan 11 Jan 08 Mar 09 Mar 10 Mar 08 Sep 09 Sep 10 Sep Legislations It is important to find “real synergies”, and not only “placebo synergies”.
    • Forest BioRefinery BioBusiness optionsExamples of a “brownfield” mill becoming an Integrated Forest Biorefinery (IFB): Wood Pellets Torrefied Pellets Past & Future Gasification District Heating Paper El. Turbines Turpentine Bio‐Oils Future ??? BioGas ®
    • What decide the options? ▪ The gasification technology chosen is dependent on both  upstream and downstream external influences and internal  needs Raw material  availability Market Raw material  Gas cleaning  Post  iGasification and pre‐ and  treatment  iCombustion treatment conditioning (synthesis) Follum mill and co‐® companies
    • Biomass CHPPLUSS® Options  Alternatives: Alternatives: Process efficiencies: Alt.1: Biomass Integrated Gasification  Process efficiencies: Alt.1: Biomass Integrated Gasification  η Gasification = 78 % Combined Cycle (BIGCC) η Gasification = 78 % Combined Cycle (BIGCC) Alt.2: Integrated Combustion Colour legend: η Methanation = 82 % Alt.2: Integrated Combustion Colour legend: η Methanation = 82 % Blue – Fixed figures η Steam Turbine = 80 % Blue – Fixed figures η Steam Turbine = 80 % Red – Export products η Combustion = 80 % Red – Export products η Combustion = 80 % iCombustion Alt.2 Gasification OxidationBiomassResidues Electricity to the grid Chipping50 MW Bleed‐off option200k m3/a 8 MWel 7 MWel Alternativesw=40%Bark Alt.1 iGasification Steam to Mill  Combustion Steam  Drying and  (MP & LP):30 MW 80 MW 63 MW 40 MW (Oxidation) 32 MWth Turbine 25 MW conditioning w=10% Bleed‐off option ‐ Belt (Andritz), or ‐ Circulating Fludized Gasifier, or ‐ Gas Engine, or ‐ Backpressure turbine ‐ Drum, or ‐ Entrained Flow Gasifier, or ‐ Gas Turbine ‐ Belt/Drum integrated, or Combined Cycle ‐ Updraft Flow Gasifier ‐ No drier Bio Fuels: 23 MW Methanation, ‐ Methane Internal &  or similar 18 MW ‐ Methanol District Heating ‐ BioDME 4.5 MW 3.7 MW ®
    • Optimalization of energy with pinch analysis Thermo‐chemical  LP Steam (<3 bar) conversion MP Steam (20 bar) HP Steam (>60 bar) Fuel Excess air Partial air No air 100%Combustion Gasification Pyrolysis 90% 650˚C 800‐1400˚C 500˚C 80% 70% Heat & Fuel & Product Liquids Power Gases (Syngas) (Bio‐oil) 60% It should be noted that there are  50% differences in efficiency also between  HP FG FB ‐o il ‐C ‐E ‐C Bio the technologies among Combustion,  s ti o n a ti on ion u fic ca t mb asi sifi Gasification and Pyrolysis. Co G Ga ®
    • BioFuel – Conversion routes ▪ BioFuel product pathway examples Gasification has become broadly  recognized as an attractive conversion  process. The reasons most often  mentioned are the high efficiency and  the back‐end flexibility. [102] Methane Methane®
    • CO2 emission reduction vs. Energy efficiency for  various fuels Since generally biomass will be  relatively expensive, high efficient  conversion processes are needed to  CO2 emission relative to Gasoline obtain economically attractive systems. 100% Total energy efficiency 85% 77% 50% 41% 45% 20% 20% Gasoline Raps fuel FTD Ethanol Methane Fast Pyrolysis It should be noted that the more conversion stages to get to the® end product, the lower total energy efficiency is generated!
    • Various technology optionsVarious gasification technologies have theiradvantageous anddisadvantages, and thereis no such thing as a technology that “fits all”. CFB EFG UFG The ENERGOS integrated The product we decide combustion has the  to produce decides advantage that it can quite much which have a slip‐stream with technology we will use! syngas out before  the combustion chamber. ® Integrated Combustion
    • Overall strategy ▪ Flexibility, flexibility, flexibility…. Electricity El. certificates Gasification Biomass Steam for local usage Sale or energy storage  Gas (methane?), Liquid (Methanol?)… with methane, methanol or similar products!®
    • Future thoughts… ▪ A biomass gasification plant will replace Follum’s multi fuel boiler (MBK). ▪ A CFB producing BioMethane will have the advantage that methane from  sludge digestion could be added at a later stage. But the other option will be  to gasify the biosludge instead of anaerobic digestion. ▪ Because of its high efficiency and low emissions, the BIGCC can also be  applied to a growing market niche, the repowering of older facilities. [66] ▪ In addition, the advanced gasification process can be used to generate fuels  and chemicals, such as low‐cost hydrogen and syngas for chemical synthesis,  as well as baseload power. [66] ▪ The higher thermodynamic efficiency of the IGCC cycle minimizes carbon  dioxide emissions relative to other technologies. [92] ▪ The Milena gasifier produces much methane compared to other, due to its  indirect gasifier. [58]®
    • Biomass Gasification Reference plants ▪ Södra Cell Varö has operated a low temperature bark gasifier since 1987.  The gas is used in the lime Klin [10]. ▪ Värnamo BIGCC, starting up again now ▪ UPM, Fortum, Gasification plant from Metso integrated with the bio‐boiler ▪ Gasification plant in Karlsruhe (Metso?) ▪ Nexterra Systems Corp. Their first installation with direct‐fires syngas derived from wood, into industrial process boilers, at Kruger Products. [32] ▪ Gøteborg Energi, CFB, 20 MW. Starting to build soon, 2011. Expansion of the  plant in 2016 to 80 MW. Producing methane, SNG for the grid. ▪ Chalmers University, CFB, 2‐4 MW, operated in many years. ▪ ECN is developing the Milena indirect gasifier. 10 MW. [58] ▪ Entrained flow gasifier test plant (2ton/day) at Kawagoe, Japan. [74] ▪ Lahti Energia, Waste Gasification, 2x80 MW, cost 157 MEuro, start April  2012. ▪ UPM, Andritz‐Carbonara, UPM Kaukas, pilot plant, Laapenranta.®
    • Thank you for your time! Questions? ® For more info:  www.re‐cube.net®